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1.  INTRODUCTION

Given the intimate nature of the relationship be -
tween sediment and organisms living on or in sedi-
ment (infauna), it is not surprising that sediment con-
ditions impact all aspects of their life histories. For

example, sediment conditions have been observed
to play an important role in processes such as larval
settle ment, foraging, reproduction, and locomotion
of in fauna (Ólafsson et al. 1994, Lu & Grant 2008, Lu
et al. 2008, Dashtgard et al. 2014, Gerwing et al.
2016). This relationship is far from unidirectional, as
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in fauna are able to greatly modify their sedimentary
environment (Woodin et al. 2010, De Backer et al.
2011, Godbold et al. 2011, Quintana et al. 2013, Ger-
wing et al. 2017b). As such, any study conducted on
infauna must include some measure of sediment
variables to comprehensively understand or describe
these systems.

Common assessments of intertidal sediment condi-
tions, such as particle size distribution, as well as
water and organic matter content, require extracting
a sediment core that is transported back to the labo-
ratory for processing (Valdemarsen et al. 2010,
Ghasemi et al. 2014, Pilditch et al. 2015, Gerwing et
al. 2016). This extraction and movement can poten-
tially alter physical, chemical, and biological sedi-
ment characteristics; for example, cores can begin to
dry out, or water can move within the core, influenc-
ing the results of depth profile analyses. Moreover,
large rocks and shells are often removed from sam-
ples, and biogenic structures such as burrows are de -
stroyed during sediment homogenization prior to
processing (Kristensen et al. 2012, Queirós et al.
2013). All of these aspects may influence measure-
ments, and results may not be accurate representa-
tions of in situ sediment conditions.

There is a need for an in situ method to assess
sediment conditions to supplement existing vari-
ables. One potential candidate is sediment penetra-
bility, which can easily be measured in situ by, for
example, dropping an object of known weight from
a known height and measuring how far it penetrates
into sediment (Hsu et al. 2009, Gerwing et al.
2015a, Campbell et al. in press). Devices that meas-
ure sediment penetrability are referred to as pen-
etrometers. They have a long history of consistent
use in terrestrial systems (Perumpral 1987, Lowery
& Morrison 2002, da Veiga et al. 2007, Heneberg
2009, Fleischer et al. 2014), but have been used only
sporadically in coastal systems (Chapman & Newell
1947, Chapman 1949, Grant 1984, Thrush et al.
2003b, Hsu et al. 2009, Virgin et al. 2020). Sediment
penetrability, also termed sediment compressive
strength, penetrability resistance, or sedi ment hard-
ness, is typically acknowledged as a quick and
inexpensive way to assess sediment con ditions,
either independently or in conjunction with other
sediment variables. Penetrability has also been used
to assess sediment compaction, an indicator of dete-
rioration of sediment conditions (Chapman 1949,
Greenwood et al. 1997, Herrick & Jones 2002, Hsu
et al. 2009, Spencer et al. 2017).

Correlations between sediment penetrability and
in faunal communities in soft-sediment coastal habi-

tats have been observed previously (Chapman 1949,
Thrush et al. 2003a, Hsu et al. 2009, Gerwing et al.
2016). Although these earlier studies suggested
value in measuring sediment penetrability, relation-
ships with other sediment variables in intertidal
habitats, as well as with the infaunal community, are
poorly understood. It is possible that penetrability is
merely a product of other factors that influence tidal
flat communities and is not contributing independent
information. Furthermore, it is un clear if using sedi-
ment penetrability improves our ability to predict
infaunal community structure based upon sediment
conditions. Therefore, on both the Pacific and Atlan -
tic coasts of Canada, we examined the relationship
between sediment penetrability, other sediment vari-
ables (mean particle size, water content, organic con-
tent, as well as a measure of porewater redox and
dissolved oxygen content), and infaunal community
structure to determine if penetrability should be in -
cluded when assessing environmental conditions.
More specifically, we ad dressed the following ques-
tions: (1) Should sediment penetrability be considered
as a separate, complementary, variable when as ses -
sing sediment conditions? (2) What environmental
conditions might sediment penetrability be repre-
senting? (3) Does inclusion of sediment penetrability
improve empirical model performance when evaluat-
ing relationships between sediment variables and the
infaunal community?

2.  MATERIALS AND METHODS

While data used here have been published before
(Gerwing et al. 2015a, 2016, Campbell et al. in press),
the relationship between sediment penetrability and
other sediment variables has not been explored, and
the extent to which adding penetrability to other sed-
iment measures improves model performance has
not been considered.

2.1.  Penetrometer (guide bar and weight)

Sediment penetrability in our studies was meas-
ured using a guide bar and weight (Gerwing et al.
2015a, 2016, Campbell et al. in press). The guide
bar is comprised of a 1 m long metal angler (90°),
with a hollow cylindrical tube ~15 cm long secured
within (see Fig. S1 in the Supplement at www. int-
res. com/ articles/ suppl/  m648 p067_ supp. pdf). The  top
of the cylinder is 0.75 m from the bottom of the
guide bar. As this creates an asymmetrical design,
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the top of the guide bar is marked. A cylindrical rod
of steel forms the weight (15 cm long with a 1.9 cm
diameter and weighing 333 g). When assessing sed-
iment penetrability, the guide bar is placed flush
against the sediment surface and the top of the
weight dropped from 0.75 m, passing through the
tube and along the angler, penetrating the sedi-
ment. Depth of penetration is marked on the weight
and measured (mm); we used this depth as our
measure of sediment penetrability. Note that this
measure of penetrability (depth) can be converted
to average impact force per unit area by assuming
that all of the initial potential energy (2.204 J) of the
weight is converted to kinetic energy immediately
before impact. Materials for our penetrability device
cost under CA$50 ( ≈ US$38) and construction took
less than 1 h. Certain commercial devices (such as
the Pocket Penetrometer, Gilson) can also be used
(Grant 1984).

2.2.  Study sites

The present study was conducted
on tidal flats on both the Pacific and
Atlan tic coasts of Canada (Fig. 1). Six
intertidal areas were examined along
the Pacific coast near the Skeena
River (Fig. 1, left), while 8 were stud-
ied along the Atlantic coast in the
upper Bay of Fundy (Fig. 1, right). In -

tertidal sediments along the Atlantic coast were
predominantly composed of silt and clay (<63 μm),
resulting in a small ob served volume-weighted
mean particle size (~46 μm). Intertidal sediments
along the Pacific coast were a mixture of silt/
clay and sand (≥63 μm), resulting in higher ob -
served volume-weighted mean particle sizes
(~173 μm; Table 1). However, considerable variation
exists among sites, with tidal flats dominated by
clay/silt, mixtures of silt/clay and sand, or com-
posed mostly of sand (Table S1). In addition, the
apparent redox potential discontinuity (aRPD) was
deeper, and penetrability, water content, and
organic matter content of the sediments were all
higher on the Atlantic coast (Table 1; Table S1).
More information on these sites can be found in
Gerwing et al. (2015a) and Campbell et al. (in
press).
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Fig. 1. Study sites on the Pacific and Atlantic coasts of Canada, mapped using QGIS (QGIS Development Team 2019). WC:
Wolfe Cove  (54.24° N, 130.27° W); CC: Cassiar Cannery (54.18° N, 130.18° W); TB: Tyee Banks (54.20° N, 129.97° W) ; BO:
Boulder Beach (54.06° N, 130.60° W); PI: Prescott Inlet (54.07° N, 130.59° W); GU: Coast Guard Beach (54.06° N, 130.58° W);
MP: Mary’s Point (45.72° N, 64.67° W); DF: Daniels Flats (45.79° N, 64.61° W); GA: Grande Anse (45.82° N, 64.50° W); PC: Pecks
Cove (45.75° N, 64.49° W); MN: Minudie (45.77° N, 64.38° W); MC: Moose Cove (45.29° N, 63.81° W); AV: Avonport (45.11° N, 

64.24° W); SP: Starrs Point (45.12° N, 64.37° W)

Variable                       Pacific  Atlantic 
                                                      N       Mean ± SE          N       Mean ± SE

Sediment penetrability (mm)     360   30.31 ± 1.17      1021   66.81 ± 1.01
Depth to aRPD (mm)                  360   0.11 ± 0.02      1021   37.78 ± 0.84
Water content (%)                      360   28.08 ± 0.45      1021   37.91 ± 0.31
Organic matter content (%)       360   2.42 ± 0.09      1021   3.30 ± 0.04
Mean particle size (μm)             360   173.02 ± 4.16      1021   46.56 ± 1.45

Table 1. Summary of sediment variables of tidal flats along the Pacific and
Atlantic coasts of Canada (see Fig. 1 for sampling sites). N: sample size;
aRPD: apparent redox potential discontinuity. See Table S1 for more detailed 

values of individual sampling sites on each coast
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2.3.  Sampling scheme

At each mudflat, transects were established run-
ning from the landward start of the mudflat to the low
water line (Pacific: 5 transects per site, separated by
~25 m, and 60−200 m long; Atlantic: 2 transects per
site, separated by 700−1000 m, and 700−1800 m long).
Transects were stratified into zones based on distance
from shore, with 4 zones in the longer transects of the
Atlantic coast, and 3 zones in those of the Pacific.
Within each zone, 1 sampling location was randomly
selected (Pacific coast: n = 3 per transect, 15 per site;
Atlantic coast: n = 4 per transect, 8 per site). On the
Pacific coast, sites were sampled 4 times throughout
the summer of 2017 (23 May–1 June, 21−26 June,
19−25 July, and 18−24 August) on the lowest low
tides (Cox et al. 2017, Gerwing et al. 2018a, Campbell
et al. in press). On the Atlantic coast, sites were sam-
pled sixteen times between 2009 and 2011, approxi-
mately every 3−6 wk (sampling rounds were con-
ducted over 4−5 d starting on the following dates:
3 June, 20 June, 13 July, 4 August, 30 August, 2 Oc -
tober, and 8 December in 2009; 10 March, 31 May,
22 June,14 July, 3 August, 15 October, 4 December in
2010; and 11 March in 2011). Individual sampling
trips are hereafter referred to as rounds. On the Pa-
cific coast, 360 sampling locations were assessed,
while on the Atlantic coast, 1021 were assessed. More
details of the sampling scheme can be found in Ger-
wing et al. (2015a) and Campbell et al. (in press).

2.4.  Sediment properties

At each sampling location, sediment penetrability
was measured, and a sediment core (3 cm diameter,
5 cm depth on the Atlantic coast; 4.5 cm diameter,
5 cm depth on the Pacific coast) was collected as
close by as possible to determine sediment proper-
ties. From this core, the top 1 cm was processed to
determine sediment water content (drying at 110°C
for 12 h), organic matter content (ashing at 550°C for
4 h), and volume-weighted average particle size
(Malvern Mastersizer 2000). More details of this pro-
cess can be found in Gerwing et al. (2015a) and in
Text S1. Particle size distribution, water content, and
organic matter content deeper than 1 cm within cores
were seldom greatly divergent from the top 1 cm
(Savoie 2009, Cox et al. 2019, Sizmur et al. 2019), and
so we only analyzed the top 1 cm. While in the field, a
second core (7 cm diameter and 5−10 cm depth) was
used to create a void in the sediment from which the
depth to the aRPD was visually determined (Gerwing

et al. 2013b). aRPD depth is a relative measure of
sediment porewater dissolved oxygen and redox
conditions. Sediment with a deeper aRPD has more
available dissolved oxygen, and the sediment is more
oxidized or less reduced than sediment with a shal-
lower aRPD depth (Gerwing et al. 2015b, 2018b).

2.5.  Infaunal community

At each 1 m2 quadrat, infauna were collected with
a corer 10 cm in length and 7 cm in diameter. Sedi-
ment was passed through a 250 μm sieve, and the
content in the sieve was stored in vials of 95%
ethanol (Gerwing et al. 2015a, 2017a, Campbell et al.
in press). On the Pacific coast, specimens were iden-
tified to the lowest possible taxonomic unit as fol-
lows: cuma ceans, amphipods, tana ids, polychaetes,
nemer teans, and bi valves were identified to species;
chi rono mids (larvae) to family; copepods to order;
ostra cods to class; and nematodes to phylum (Ger-
wing et al. 2017a, 2020, Campbell et al. in press). On
the Atlantic coast, polychaetes were identified to
family; bivalves and amphipods to species; copepods
to order; ostracods to class; and nematodes to phylum
(Gerwing et al. 2015a, 2016). Different taxonomic
resolution should not impair our ability to compare
between coasts, as Gerwing et al. (2020) showed that
analyzing infauna community composition data with
specimens identified to different taxonomic levels
produced similar results.

2.6.  Statistical analysis

2.6.1.  Relationship between sediment penetrability
and other sediment variables

Scatterplots (Figs. S2 & S3) suggested that potential
relationships between sediment penetrability and
other sediment variables were linear; therefore, only
linear relationships were explored. Relationships be-
tween penetrability as the response variable, and ei-
ther aRPD depth, mean particle size, water content,
organic matter content, or some combination as pre-
dictor variables were assessed using generalized lin-
ear mixed effects models (Burnham et al. 2011), cor-
rected for a skewed distribution by using a Poisson
distribution (Richards 2008, O’Hara & Kotze 2010).
Models were constructed in R Version 3.6.1. A thresh-
old Pearson correlation coefficient of 0.95 was used to
decide if sediment variables were too correlated to be
considered independent and included together in
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models (Clarke & Ainsworth 1993). Since the highest
correlation coefficient observed was 0.86, all variables
were included in our models. Based upon our pre -
vious experience examining relationships between
infaunal communities and sediment conditions (Bar-
beau et al. 2009, Savoie 2009, Gerwing et al. 2016,
Cox et al. 2019, Sizmur et al. 2019), a candidate suite
of models of interest were constructed a priori (Ander-
son et al. 2000, Burnham & Anderson 2002). This suite
of models includes all sediment variables individually,
all variables in a single model, and a model including
water content, mean particle size, and their interac-
tion. A separate suite of models was constructed for
the Pacific and Atlantic coasts. In all models, residuals
were examined for heteroscedasticity and no correc-
tions were required. Models from the Pacific coast in-
cluded site (6 sites), transect nested within site, and
round (4 rounds) as random factors. Models from the
Atlantic coast included site (8 sites), transect nested
within site, year (2 years), and round nested within
year (8 rounds) as random factors (Burnham et al.
2011, Gerwing et al. 2013a). Since all models include
these random factors, and it is the sediment variables
that are of interest, we do not present coefficients or
p-values for random factors. Further, since models
were constructed to visualize relationships between
sediment variables, not to select a top-ranked model,
criteria such as Akaike’s information criterion (AIC)
are not presented. Rather, model performance was
elucidated using marginal R2, not conditional R2. Mar-
ginal R2 values describe the proportions of variance
explained by sediment variables of interest (the fixed
effect), while conditional R2 values also include the
random factors. Therefore, marginal R2 enables us to
properly model the spatiotemporal nature of the vari-
ables using random effects, while assessing the fit of
the fixed effect(s) of interest (Edwards et al. 2008,
Nakagawa & Schielzeth 2013).

2.6.2.  Relationship between infaunal communities
and sediment variables

Relationships between the infaunal community and
sediment variables were examined using 3 multivari-
ate analyses in PRIMER with the PERMANOVA add-
on (Anderson et al. 2008, Clarke & Gorley 2015). First,
distance-based linear models (DISTLM; (McArdle &
Anderson 2001, Anderson et al. 2008) were con-
structed to assess linear relationships between infauna
and all combinations of sediment variables, including
models with and without sediment penetrability. Sec-
ond, since biota could have a non-linear relationship

with some of the sediment variables, we conducted
PRIMER’s RELATE test (Clarke & Gorley 2015) to ex-
plore concordance in patterns between infauna and
sediment variables. If the RELATE test was significant,
then PRIMER’s BEST routine (BIO-ENV, Spearman
correlation) was used to identify which sediment vari-
able(s) was/were associated with the infaunal com-
munity (Clarke & Ainsworth 1993, Clarke et al. 2006).
Third, a permutational multi variate analysis of covari-
ance (PERMANCOVA) was also conducted (Gerwing
et al. 2016) to incorporate the spatial and temporal
categorical structure of the data sets (which the DIS-
TLM and RELATE did not) as random factors (similar
to the univariate mixed effects models above). The
PERMANCOVA is presented in the supplement (Sup-
plemental Table S2), as results do not differ from
those presented here.

Multivariate relationships from the Pacific and At-
lantic coasts were analyzed separately. Infaunal den-
sities were fourth-root transformed (to better balance
the influence of rare and common taxa on the resem-
blance matrix), and the resemblance matrix was con-
structed using Bray-Curtis similarity (a dummy vari-
able of ‘1,’ a value below our threshold of detection,
was added to ensure proper calculation of resemblance
for patches devoid of infauna). For the sediment vari-
ables for the Pacific coast, mean particle size, water
content, and organic matter content were square-root
transformed, while for the Atlantic coast, mean parti-
cle size was log(datum+1) transformed, aRPD depth
was fourth-root transformed, and water content and
organic matter content were square-root transformed
to correct for skewed distributions. Sediment variables
were then normalized, and a resemblance matrix was
constructed using Euclidean distances. In the DIS-
TLM, since we are now interested in selecting top-
ranked models, model performance was assessed us-
ing AIC, corrected for small sample sizes (AICc), as
well as R2 values (Burnham & Anderson 2001, Burn-
ham & Anderson 2002, Anderson et al. 2008). Models
with a ΔAICc of ≤2 were considered to be equivalent
(Burnham & Anderson 2002, Burnham et al. 2011).

3.  RESULTS

3.1.  Relationship between sediment penetrability
and other sediment variables

While univariate regressions identified statistically
significant relationships between sediment penetra-
bility and all other sediment variables, sediment vari-
ables accounted for a minor portion of observed vari-

71
A

ut
ho

r c
op

y



Mar Ecol Prog Ser 648: 67–78, 2020

ation in penetrability (Table 2; Figs. S2–S5). In gen-
eral, higher R2 values were observed along the
Pacific coast than the Atlantic; however, all values
were below 10%, and only water content in Pacific
sediment was higher than 5%. On both coasts, as
water content and organic matter content of sedi-
ments increased, so did penetrability. Conversely, as
mean particle size decreased, penetrability in -
creased on both coasts. The only property that exhib-
ited a mixed trend (positive and negative coefficients
be tween coasts) was aRPD depth. aRPD depth
accounted for a very small portion of the observed
variation in penetrability (0.1−1.2%).

3.2.  Relationship between infaunal communities
and sediment variables

When linear relationships between the infaunal
community and sediment variables were examined,
sediment penetrability was included in almost all top
ranked models (Table 3). While none of the models
ex plained a large portion of the variation observed
in infaunal communities (2−8% for the top-ranked
models, down to 0.3 for the other models examined),
penetrability accounted for a similar or greater por-
tion of the infaunal community variation than other
single sediment variables.

Assessment of pattern concordance to gain insight
on possible non-linear relationships between sedi-
ment variables and the infaunal community revealed
no relationship on the Pacific coast (RELATE rho:
0.009; p = 0.69). A significant pattern concordance
be tween infaunal community and sediment variables

was observed on the Atlantic coast
(RELATE rho: 0.15; p = 0.0001).
While the sediment variable that
grouped best with the infaunal
community on the Atlantic Coast
was mean particle size (Table 4),
penetrability was included in the
top correlations (Spearman corre-
lation coefficient: 0.15−0.16). The
outcome of this multivariate corre-
lation ana lysis did not differ greatly
from the DISTLM analysis, sug-
gesting that there are no strong
non-linear associations underlying
the relationship between infaunal
community and sediment variables
in our datasets.

4.  DISCUSSION

Infauna live within sediment, therefore, sediment
conditions can have a large impact upon them, at all
stages in their life cycle (Lu & Grant 2008, Lu et al.
2008, Dashtgard et al. 2014). Elucidating sediment
conditions is thus necessary to fully understand in -
faunal communities and intertidal systems in gen-
eral. We evaluated the relationship between com-
monly studied sediment variables, namely aRPD
depth, mean particle size, organic matter content,
water content, and sediment penetrability, along the
Pacific and Atlantic coasts of Canada. Our objective
was to determine whether penetrability measures a
different aspect of intertidal sediment conditions
when compared to other sediment variables. We also
examined if penetrability is an important variable to
include when modeling infaunal community dynam-
ics, and we gave thought to what sediment penetra-
bility may be representing.

4.1.  Relationship between sediment penetrability
and other sediment variables

We observed that while sediment penetrability was
statistically related to other sediment properties, rela-
tionships were weak. Therefore, penetrability can be
considered as a separate, complementary variable
when quantifying sediment conditions in intertidal
systems. The positive relationship ob served between
penetrability and water content, as well as the nega-
tive relationship observed with mean particle size
were expected (Chapman & Newell 1947, Chapman
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Coast         Model                                             R2               p

Pacific        Particle Size, Water Content, and Interaction         8.74        <0.0001
                  Water Content                                                           8.45           0.001
                  All Variables                                                              8.24        <0.0001
                  Particle Size                                                               5.71           0.001
                  Organic Matter Content                                           5.31           0.001
                  aRPD Depth                                                               0.07           0.01

Atlantic     All Variables                                                              4.54        <0.0001
                  Particle Size, Water Content, and Interaction         3.29        <0.0001
                  Particle Size                                                               3.00           0.001
                  Water Content                                                           2.65           0.001
                  Organic Matter Content                                           2.18           0.001
                  aRPD Depth                                                               1.22           0.001

Table 2. Summary of the generalized linear mixed effects models assessing the re-
lationship between sediment penetrability and other sediment variables of tidal
flats along the Pacific and Atlantic coasts of Canada (see Fig. 1 for sampling sites).
Particle size: mean particle size; aRPD: apparent redox potential discontinuity

A
ut

ho
r c

op
y



Gerwing et al.: Sediment penetrability in coastal systems 73

Coast         Model                                                                          ΔAICc             AICc                 R2

Pacific        Organic Matter Content, Particle Size, Penetrability                                              0               2555.10            3.22
                  aRPD Depth, Organic Matter Content, Particle Size, Penetrability                    0.70            2555.80            3.59
                  Water Content, Organic Matter Content, Particle Size, Penetrability                0.70            2555.80            3.59
                  All                                                                                                                               1.50            2556.60            3.93
                  Water Content, Organic Matter Content, Particle Size                                        1.60            2556.70            2.78
                  Organic Matter Content, Penetrability                                                                  1.70            2556.80            2.21
                  Water Content, Organic Matter Content, Penetrability                                         2.10            2557.20            2.64
                  Organic Matter Content, Particle Size                                                                     2.20            2557.30            2.09
                  aRPD Depth, Organic Matter Content, Penetrability                                             2.40            2557.50            2.58
                  aRPD Depth, Water Content, Organic Matter Content, Particle Size                   2.50            2557.60            3.11
                  Organic Matter Content                                                                                           4.50            2559.60            0.89
                  Penetrability                                                                                                               5.60            2560.70            0.59
                  Particle Size                                                                                                               5.90            2561.00            0.50
                  Water Content                                                                                                           5.90            2561.00            0.49
                  aRPD Depth                                                                                                               6.50            2561.60            0.33

Atlantic     All                                                                                                                                 0               7293.60            7.95
                  Particle Size, Water Content, aRPD Depth, Penetrability                                      7.80            7301.40            7.06
                  Particle Size, Water Content, Organic Matter Content, Penetrability                 10.10           7303.70            6.85
                  Water Content, Organic Matter Content, aRPD Depth, Penetrability                 13.00           7306.60            6.59
                  Particle Size, Water Content, Organic Matter Content, aRPD Depth                  13.80           7307.40            6.51
                  Particle Size, Organic Matter Content, Penetrability                                            18.80           7312.40            5.86
                  Particle Size, Organic Matter Content, aRPD Depth                                             19.30           7312.90            5.82
                  Particle Size, Water Content, aRPD Depth, Penetrability                                     19.90           7313.50            5.95
                  Particle Size, Water Content, Organic Matter Content                                         21.90           7315.50            5.58
                  Organic Matter Content, aRPD Depth, Penetrability                                            22.30           7315.90            5.54
                  Organic Matter Content                                                                                          47.70           7341.30            2.78
                  Penetrability                                                                                                              53.40           7347.00            2.24
                  Water Content                                                                                                          55.60           7349.20            2.03
                  Particle Size                                                                                                              57.40           7351.00            1.85
                  aRPD Depth                                                                                                              65.80           7359.40            1.04

Table 3. Summary of distance-based linear models (DISTLM) evaluating model performance of sediment variables on infaunal
communities of tidal flats along the Pacific and Atlantic coasts of Canada (see Fig. 1 for sampling sites). Top ranked models are
indicated in bold. Particle size: mean particle size; aRPD: apparent redox potential discontinuity; AICc: Akaike’s information 

criterion corrected for small sample size

Variables                                                                                                                                                                        Correlation

Particle Size, Organic Matter Content                                                                                                                               0.16
Particle Size, Organic Matter Content, Penetrability                                                                                                       0.16
Particle Size, Organic Matter Content, aRPD Depth                                                                                                        0.16
Particle Size, Organic Matter Content, aRPD Depth, Penetrability                                                                                 0.16
Particle Size                                                                                                                                                                          0.16
Particle Size, Penetrability                                                                                                                                                  0.15
Particle Size, Water Content, Organic Matter Content, aRPD Depth, Penetrability                                                      0.15
Particle Size, Water Content, Organic Matter, Penetrability                                                                                           0.15
Particle Size, Water Content, Penetrability                                                                                                                       0.15
Particle Size, Water Content, Organic Content, aRPD Depth                                                                                          0.15
Organic Matter Content                                                                                                                                                      0.10
Water Content                                                                                                                                                                      0.09
Penetrability                                                                                                                                                                         0.07
aRPD Depth                                                                                                                                                                          0.07

Table 4. Correlation (BEST BIO-ENV, 9999 permutations) between the infaunal community of mudflats along the Atlantic coast
(see Fig. 1 for sampling sites) and sediment variables to gain insight on possible non-linear relationships. aRPD: apparent redox 
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1949, Grant 1984, Perumpral 1987, Vaz et al. 2001,
Hsu et al. 2009, Fleischer et al. 2014). Sandy sediment
resists the impact force of the dropped weight more
than sediment composed of silt/clay, as does sediment
with a lower water content (Perum pral 1987, Vaz et
al. 2001, Hsu et al. 2009, Fleischer et al. 2014). As
such, penetration is lower on sandflats when com-
pared to mudflats, and higher in sediment containing
more water. Our cursory field observations in mudflat
areas with high water content confirm the latter:
‘soupy’ sediments exhibit high penetration values.
However, the relationship between particle size and
penetrability is complex, as finer grained sediments
will contain more silt and clay. Clay has electromag-
netic properties and causes sediment particles to bind
together. In dry, terrestrial systems, clay cements and
hardens the soil, but in wet systems, clay can remain
in suspension and be colloidal, making sediment
soupier (Chapman & Newell 1947, Yates et al. 1993,
Dashtgard et al. 2008). The relationship between sed-
iment penetrability and clay content is complex and
will require further research.

Currently, the nature of the weak positive relation-
ship observed between sediment organic matter con-
tent and sediment penetrability in our study is
unclear. This relationship could be a result of biotur-
bation by small infauna or meiofauna such as cope-
pods and ostracods that would have been present in
the sediment cores (hence increasing organic matter
content) and could increase penetrability. However,
the opposite relationship could also be expected
(decreased penetrability with increased organic mat-
ter content), as organic matter in the form of extracel-
lular polymeric substances increases the sediment’s
resistance to disturbance and erosion (Underwood et
al. 1995, Paterson & Hagerthey 2001). More research
is required to better understand this penetrability−
organic matter content relationship.

The only sediment variable that exhibited both a
positive and negative relationship between coasts
with sediment penetrability was aRPD depth. aRPD
depth is a relative indicator of sediment porewater
redox and dissolved oxygen conditions (Gerwing
et al. 2015b, 2018b). Based upon the positive and
negative coefficients, as well as the small portion of
the ob served variation each term accounted for
(Table 2), we suggest that no meaningful relation-
ship exists between aRPD depth and sediment pen-
etrability. Statistical significance in this case is
likely a result of high statistical power that detected
small random trends.

When these relationships are examined together,
and despite the observed correlations between sedi-

ment penetrability and other sediment variables, the
weak nature of the associations indicates that pene-
trability can be considered as a separate, comple-
mentary variable when quantifying sediment condi-
tions in intertidal systems.

4.2.  What environmental conditions might
 sediment penetrability be representing?

Sediment penetrability has been used to measure
or infer various sediment conditions in different
habitats. From an agricultural perspective, soil pen-
etrability is affected by clay content, soil moisture,
and compaction by machinery traffic. Such terres-
trial studies have used soil penetrability as an
assessment of plant root restriction and soil degra-
dation due to machinery traffic (da Veiga et al.
2007). From a geotechnical engineering perspective,
penetrability is used as an indication of the relative
density of granular deposits, such as sands and
gravels from which it is virtually impossible to ob -
tain undisturbed samples (Chapman & Newell 1947,
Chapman 1949, Perum pral 1987). In coastal systems,
penetrability has been used to assess sediment com-
paction, an indicator of deterioration of sediment
conditions (Chapman 1949, Greenwood et al. 1997,
Herrick & Jones 2002, Hsu et al. 2009, Spencer et al.
2017).

Beyond generalities, penetrability has also been
used in various specific contexts in coastal habitats.
Grant (1984) assessed the penetrability of coastal
sediment as an indication of resistance of sediment
to bill probing by shorebirds. Similarly, sediment
penetrability has been used to measure the force
required for infauna to burrow into the sediment,
with in creased penetrability indicating sediment
requiring less force (Chapman & Newell 1947,
Chapman 1949). Other studies have used sediment
penetrability to measure catastrophic deposition of
terrestrial sediment on intertidal mudflats; specifi-
cally, sediments more difficult to penetrate reflected
disturbance, and sediments with higher penetrabil-
ity values reflected those undergoing recovery
(Thrush et al. 2003a,b). Virgin et al. (2020) used
sediment penetrability to measure certain aspects of
salt marsh restoration; sediments at the bottom of
salt pools in newly restored marshes were unconsol-
idated and easily penetrable, but hardened and
became less penetrable as recovery progressed.
Conversely, consolidated sediment that is difficult to
penetrate on mudflats or on marsh surfaces may act
as a barrier to water penetration and subsurface
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flow, impact drainage, and promote formation of
cyanobacteria mats, all of which are factors that
hinder restoration of estuaries and saltmarshes
(Under wood 1997, Crooks et al. 2002, Morris et al.
2014, Spencer et al. 2017, Lawrence et al. 2018).
Finally, in our previous studies, we postulated that
sediment penetrability is a relative measure of how
easily infauna can burrow and water pass into the
sediment (Gerwing et al. 2015a, 2016, 2017c, 2018a,
Campbell et al. in press).

Sediment penetrability is also associated with sed-
iment shear strength in coastal systems (Deans et al.
1982, Berlamont et al. 1993, Grant & Daborn 1994,
Fernandes et al. 2006). Shear stress is the stress com-
ponent parallel to a given surface, such as by tidal
currents for marine sediments. Sediments with
higher shear strength are more stable and more
resistant to penetration (Berlamont et al. 1993, Grant
& Daborn 1994, Haralampides & Rodriguez 2006, Wu
et al. 2011, Grabowski 2014). While shear stress was
not evaluated in this study, the penetrability measure
described here could be a good indicator of shear
stress. Further research is required to explore this
relationship.

Our results build upon and refine these previous
interpretations of sediment penetrability in coastal
systems. We suggest that sediment penetrability is an
integrative variable that reflects the overall in situ
conditions experienced by biota. Increased penetra-
bility is indicative of finer-grained sediment with
high water content, with few rocks or shell hash pres-
ent in or on the sediment, resulting in sediment that
is easier to burrow or penetrate. Habitat character-
ized by low penetrability is indicative of larger-
grained sediment with low water content, and with
more rocks or shell hash present, resulting in sedi-
ment that requires more energy to burrow or pene-
trate. While sediment exhibiting lower penetrability
is more difficult to burrow into than finer-grained
sediment with increased penetrability, biogenic struc-
tures will be inherently more stable (Kristensen et al.
2012, Queirós et al. 2013). Finally, infauna can also
modify the sediment environment they inhabit via
burrowing and foraging, often called bioturbation
(Teal et al. 2008, 2010, Birchenough et al. 2012,
Queirós et al. 2015); therefore, infauna may also influ-
ence sediment penetrability. Sediment experiencing
increased bioturbation is likely to exhibit increased
penetrability, especially in muddy sediment with high
water content. However, more research is re quired to
elucidate how levels of bioturbation influences sedi-
ment penetrability, and if this varies be tween muddy
and sandy sediment.

4.3.  Relationship between infaunal communities
and sediment variables

When relationships between infaunal community
composition and sediment variables on tidal flats
along the Pacific and Atlantic coasts were assessed,
sediment penetrability was at least as informative as
the more commonly used measures of sediment
conditions, and inclusion of penetrability created
better performing models of the infaunal commu-
nity. Other studies have also observed weak to
strong relationships between sediment penetrability
and infaunal community structure and population
densities (Thrush et al. 2003a, Hsu et al. 2009, Ger-
wing et al. 2016). In our study, none of the top-
ranked linear models (4−8%) accounted for a large
portion of the observed variation in the infaunal
community, and when modeled independently, pen-
etrability only ac counted for a minor proportion of
the infaunal community variation (0.6−2%). Models
explaining a low proportion of the observed com-
munity variation are not surprising, since stochastic
larval settlement processes (Jones & Ricciardi 2014),
inter- and intra species interactions (Drolet et al.
2013, Greenville et al. 2014), and other regional
variables that operate on broad spatial and temporal
scales can have large effects on community struc-
ture. Moreover, weak detected relationships may
also be a product of the coarse measures of inverte-
brate density used in our study. Stronger associa-
tions would likely be ob served if we examined more
focused relationships, such as those between sedi-
ment variables and larval settlement or burrowing
activity (Chapman & Newell 1947), or if we con-
trasted sediment variables in in habited patches ver-
sus uninhabited patches (Meadows 1964, Ólafsson
et al. 1994, Pilditch et al. 2015). Regardless, pene-
trability accounted for similar or greater proportions
of the infaunal community variation when compared
to sediment particle size, orga nic matter content,
and water content (Tables 3 & 4), i.e. variables
whose influences on infaunal communities are more
well known (Meadows 1964, Schlüter 1991, Ólafs-
son et al. 1994, Snelgrove et al. 1999, Lu & Grant
2008, Lu et al. 2008, Dashtgard et al. 2014, Pilditch
et al. 2015, Gerwing et al. 2016). Therefore, our
results show that sediment penetrability is at least
as informative as the more commonly used meas-
ures of sediment conditions, and inclusion of pene-
trability creates better performing models of the
infaunal community. As such, sediment penetrabil-
ity is an important variable to include when assess-
ing infauna or intertidal sediment conditions.
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4.4.  Conclusions

Even though sediment penetrability is correlated
with other sediment variables, the weak nature of
these relationships indicates that sediment penetra-
bility can be used as a separate, complementary
assessment of sediment conditions. Specifically, pen-
etrability is an in situ, integrative measure of condi-
tions experienced by biota. As such, it is an informa-
tive and useful variable to include in future studies
that assess soft sediment conditions and infaunal
communities in intertidal habitats. Penetrability is
not often measured in intertidal studies, and we sug-
gest that its inclusion will allow for a better under-
standing of intertidal sediment conditions. Finally,
we evaluated an inexpensive and easy-to-use
method in a large range of soft-sediment intertidal
ecosystems (mudflats to sandflats) in 2 geographi-
cally distinct regions, indicating that this method
may be informative in other geographical regions.
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