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a b s t r a c t

The distribution and abundance of the canopy-forming kelp Nereocystis luetkeana is of
increasing concern for environmental management and conservation in coastal regions
due to its importance as a foundation species. Mapping kelp forests aids in understanding
their health, productivity, and response to environmental conditions. Remote sensing
using satellites is an increasingly accessible tool for mapping nearshore habitats allowing
for applications such as long-term monitoring and large- and small-scale surveys. This
paper provides a review of passive optical remote sensing techniques for detection and
mapping of floating macro-algae, and adapts these techniques for detecting Nereocystis
luetkeana, demonstrating their application through a comprehensive case study, from
imagery acquisition to map validation. This review with associated case study communi-
cates to non-remote sensing experts a road map to use remote sensing technology for
mapping kelp habitats.
© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bull kelp (Nereocystis luetkeana) is a brown algae in the order Laminariales, and represents one of two important canopy-
forming kelp species found in marine nearshore habitats on the west coast of North America, along with giant kelp (Mac-
rocystis pyrifera) (Druehl, 1970). Although the two species have similar ranges, extending from Alaska to California, there are
differences in local scale distribution due to variations in tolerance to temperature and wave exposure. Often referred to as a
foundation species, beds of bull kelp form structural underwater forests that offer habitat for fish and invertebrates (Christie
et al., 2009; Trebilco et al., 2015), and provide nutrients to grazers and to detrital food webs as wrack (Dugan et al., 2011;
Duggins et al., 2001). Also, the three-dimensional structure of beds acts as a physical barrier, reducing coastal erosion and
dampening wave action (Duggins, 1988; Eckman et al., 1989). The importance of this species in nearshore ecosystems makes
its abundance and distribution of great concern to environmental monitoring and management (Krumhansl et al., 2016;
Mumford, 2007; Springer et al., 2007; Teagle et al., 2017).
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Several factors determine bull kelp distribution and abundance. Natural factors include grazing pressure (Taylor et al.,
2018), physical disturbance from wave action (Reed et al., 2011), and natural variations of light availability, nutrients, and
temperature (Bell et al., 2015a; Pfister et al., 2017). Anthropogenic factors include direct harvest (Sutherland et al., 2008),
increase in herbivores through removal of predators by fisheries (Halpern et al., 2006; Ling et al., 2009), coastal pollution
through wastewater (Foster and Schiel, 2010), increased turbidity from shoreline development (Deiman et al., 2012; Dethier
et al., 2016), as well as climate change-induced sea temperature change, ocean acidification, and increased storm activity
(Byrnes et al., 2011; Hern�andez et al., 2018; Verg�es et al., 2016). For instance, there have been reports of bull kelp decline
following abnormally high temperature disturbances and local scale losses attributed to regions with high anthropogenic
stress (Pfister et al., 2017; Schiel et al., 2004). In many regions, however, data on the spatial temporal distribution and
abundance of bull kelp are lacking, making it difficult to define the impact of human activities and environmental drivers on
this ecologically important foundation species.

Remote sensing technology, including aerial, drone, and satellite imagery, is becoming a key component of kelp moni-
toring programs (Cavanaugh et al., 2010; Bell et al., 2015b; Casal et al., 2013; Pfister et al., 2017). Specifically, satellite data is
advantageous for mapping large areas as it provides multi-temporal data in both visible and infrared wavelengths, and re-
quires less time and labour than traditional boat- or diver-based surveys (Casal et al., 2011). Furthermore, remote sensing
technologies have the potential to improve spatial and temporal coverage through automation and repeatability (Augenstein
et al., 1991; Nijland et al., 2019). Through the use of remote sensing technology, we now have a better understanding of
regional kelp community dynamics, temporal trends, and oceanographic effects in these communities (Bell et al., 2015a;
Cavanaugh et al., 2011).

There is a growing body of research using remote sensing for detecting several species of floating algae, including giant
kelp (Augenstein et al., 1991; Bell et al., 2015b; Cavanaugh et al., 2011, 2010; Deysher, 1993; Donnellan and Foster, 1999; Fyfe
et al., 1999; Kim et al., 2010), Sargassum (Dierssen et al., 2015; Gower et al., 2006; Gower and King, 2008; Marmorino et al.,
2011; Wang and Hu, 2016), and green algae (Cui et al., 2012; Keesing et al., 2011; Ma et al., 2009; Shi and Wang, 2009). In
comparison, relatively few studies have used satellite remote sensing to map bull kelp due to the challenge of detecting the
generally smaller beds found in close proximity to rocky shorelines (Stekoll et al., 2006). Although key differences exist
between various species of floating macro algae, the general principles for detection with remote sensing are similar.
Therefore, the methods for detecting giant kelp, green algae, and Sargassum are a foundation for developing methods for
remote sensing of bull kelp. The objectives of this paper are to (1) outline the principles for optical remote sensing of bull kelp,
(2) review methods used by studies to map macro algae and their relevance to bull kelp mapping, and (3) illustrate a
methodology for optical remote sensing of bull kelp with a case study in British Columbia, Canada.
2. Optical remote sensing of bull kelp: principles

The principles for optical remote sensing of bull kelp are based on the algae's morphology and growth patterns, along with
the spectral properties of the algae, surrounding seawater, and its optical constituents.
2.1. Optical properties of kelp beds

Bull kelp beds are composed of many kelp sporophytes, which grow at or near the water's surface; they may form a dense
or sparse canopy, depending on the number and proximity of individuals. The reflectance from kelp beds is composed of
signals from the kelp plants floating on the water's surface, as well as water and its optical constituents. As Fig. 1 shows, the
above-water reflectance signal corresponding to different densities of kelp is generally most prominent at the visible (VIS)
and near infrared (NIR) spectra, similar to vascular plants (Cavanaugh et al., 2010; Jensen et al., 1980), and is a result of its
physiological and morphological characteristics.

Kelp reflectance at visible wavelengths is largely due to the photosynthetic pigments chlorophyll-a, chlorophyll-c, and
fucoxanthin present in the chloroplasts (Wheeler et al., 1984). Dominant pigments are chlorophyll-a with peak absorption at
435 and 675 nm, chlorophyll-c with peak absorption around 460 and 633 nm, and fucoxanthin, absorbing between 500 and
550 nm (Anderson et al., 1979; Kotta et al., 2014). The absorption characteristics of these pigments result in the brownish
colour of the kelp (Charrier et al., 2012); note in Fig. 1 the lower reflectance in the blue and green wavelengths due to the
higher absorption by pigments and slightly higher reflectance towards the red wavelengths. Higher reflectance in the near
infrared spectra between 700 and 900 nm is mostly due to the internal cellular structure of the central tissues, which refract
and strongly reflect these longer wavelengths (Liew et al., 2008). Pure water, on the other hand, is characterized by low
reflectance across all wavelengths and very high absorption in the near infrared due to the absorption properties of water
molecules (Mobley, 1994).

When kelp beds are sparse or partially submerged, the detected near infrared reflectance is a combination of the high
signal from kelp and low signal from the highly absorbing surrounding water. This reduces the overall signal of both the red
and infrared wavelengths (see sparse and submerged kelp vs dense kelp spectral signatures in Fig. 1). Furthermore, optical
constituents present in the seawater can reduce contrast between the beds and surrounding water, decreasing the detect-
ability of kelp beds. For example, phytoplankton may form dense blooms and increase the near infrared reflectance of
seawater (Babin et al., 2003), and suspended sediments generally increase visible and near infrared reflectance, especially red



Fig. 1. Reflectance of dense (>50% of 1m2 covered), sparse (<50% of 1m2 covered), submerged kelp (all plants slightly below water surface) and ocean water
measured with a Fieldspec Pro® spectroradiometer in the coastal waters of British Columbia, Canada.
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wavelengths (Roesler and Perry, 1995). Coloured dissolved organic matter (CDOM) strongly absorbs visible light, resulting in
decreased reflectance in blue wavelengths (Brezonik et al., 2015).

2.2. Bull kelp morphology and growth

Growth of the bull kelp sporophytes begins in early spring, after which plants grow rapidly and can reach sizes greater
than 10m in height at their maximum extent by late summer. The physical condition of the sporophyte deteriorates due to
prolonged exposure to high currents and temperatures, resulting in dislocation and removal of the plant by fall and winter
(Mumford, 2007). Because of its annual growth cycle, late summer is generally the best period for mapping bull kelp.

Each kelp plant is composed of a root-like holdfast that anchors to hard rocky substrate, a long, hollow stem-like stipe, and
an air-filled bulb called a pneumatocyst up to 15 cm in diameter (Amsler and Neushul, 1989) from which multiple blades or
lamina grow (Fig. 2b). The buoyancy of the bulb and stipe allow the plant to stand upright in the water column and the blades
to form a canopy. The portion of kelp canopy floating on the surface or just below the surface allows remote sensing platforms
to detect themacro algae (Fig. 2a). However, the proportion of kelp canopy at thewater's surface can change depending on the
length of the kelp, tidal height, currents, bathymetry, and water conditions (Fig. 2b).

The density of kelp canopy at the surface will also affect the reflectance detected by a sensor and its ability to discriminate
kelp from water. While there is no standard measure to define dense or sparse beds, the distinction may be based on the
objective of the study. Aerial-based methods such as Kelp Inventory Monitoring (KIM-1) and its modifications used in British
Columbia to quantify kelp extent and biomass (Foreman, 1975; Sutherland et al., 2008) calculate Nereocystis density directly
from imagery using a point intercept method, and define dense beds as greater than 10 plants per 10 square metres, and
sparse as fewer than 10 plants. Other methods have defined density by the percent coverage of plants or fronds visible at the
surface, where low density is less than 15% and high density is greater than 15% of a given area (Sutherland et al., 2008). These
methods are well suited to remote sensing-based detection where only the reflectance of surface plants can be detected.

3. Methods for optical remote sensing of macro algae

We compiled a literature review of studies on the subject of remote sensing of macro algae species including Nereocystis
luetkeana,Macrocystis pyrifera, canopy-forming Laminariales, and other species of floating macro algae, aiming to summarize
the methods applicable to the detection of bull kelp. Although the reviewed methods focus on various macro algae species
such as Ulva, Sargassum, and Macrocystis, which all have differences in their morphological, temporal, spatial, and spectral
characteristics, the remote sensing-based mapping protocols follow the same basic steps and techniques (workflow illus-
trated in Fig. 3).

3.1. Imagery acquisition

One of the first steps in remote sensing-based mapping projects is imagery acquisition. The optimal sensor to employ
depends on the relationship between the spectral, spatial, and temporal characteristics of the target species and the sensor.
Aerial cameras (Donnellan and Foster, 1999; Fyfe et al., 1999; Hu et al., 2015; Nezlin et al., 2007), airborne hyperspectral (Hu



Fig. 2. (a) Overhead view (satellite view) of floating bull kelp, with the bulb and part of the stipe emerged, and the blades submerged in water. (b) Bull kelp bed
cross-section. The length of the stipe and the height of the tide affects whether kelp is submerged or emerged.

Fig. 3. Generalized workflow for mapping floating macro algae with optical imagery, following previous research.
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et al., 2015; Stekoll et al., 2006) and multispectral imaging systems (Stekoll et al., 2006), space-borne multispectral sensors
(Casal et al., 2011; Cavanaugh et al., 2010; Garcia et al., 2013; Gower and King, 2008; Hu, 2009; Kim et al., 2010), and more
recently, unmanned aerial vehicles (Duffy et al., 2018) have been used in macro algae detection. Along with choosing an
appropriate sensor, timing of imagery acquisition is crucial for successful mapping of macro algae. While some macro algae,
such as pelagic Sargassum andUlva, float freely on the surface and are therefore not affected by tidal height, othermacro algae,
such as bull kelp, is most exposed during low tide and weak currents, thus defining optimal conditions for imagery acqui-
sition. Furthermore, cloud cover, water roughness, sun angle, and water column constituents also affect the visibility of macro
algae. Roughwaters, such as thosewith breakingwaves, can obscure the reflectance of the underlying kelp.Waves and ripples
alter the angle between incoming solar radiation and the surface of the water, causing glint, which results in high reflectance
across visible and NIR wavelengths and may obscure kelp (Hedley et al., 2005). In practice, it is difficult to time surveys and
conditions perfectly; consequently, data are often acquired under sub-optimal circumstances (Casal et al., 2011; Kay et al.,
2009).

3.1.1. Aerial sensors
Aerial imagery utilizes sensors fixed on aircraft to collect overlapping images covering the study area. Images are then used

to create orthophotos for delineating kelp beds and deriving products. RGB cameras, near infrared, or hyperspectral sensors
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may be used depending on the objectives of the project. Near infrared (NIR) aerial imagery has been used since the 1930s for
mapping kelp resources, for instance, in California for monitoring giant kelp (Deysher, 1993; North et al., 1993), in British
Columbia to inventory kelp resources (Foreman, 1975; Sutherland et al., 2008), and in Washington State to map kelp aerial
extent, species, and density (Pfister et al., 2017; Van Wagenen, 2015). Beyond NIR imagery, airborne hyperspectral imagers
such as AVIRIS, CASI, AISA, and PRISM collect spectral information in very narrow bands over many wavelengths, and provide
both high spatial and spectral resolutions, which is beneficial in discriminating between similar species (Dierssen et al., 2015;
O'Neill and Costa, 2013). A major benefit of aerial sensors on aircraft is the control of survey timing, temporal, and spatial
resolutions so that data acquisition can be optimized, however the costs can be high (Anderson et al., 2007). There are private
companies that can be contracted to fly and collect images, some of which may process the data into orthophotos for use in
classification.

3.1.2. Unmanned aerial vehicles (UAV)
The use of unmanned aerial vehicles or drones is becoming increasingly common for all types of habitat mapping (Duffy

et al., 2018; Hardin and Jensen, 2011; Kislik et al., 2018; Murfitt et al., 2017; Nahirnick et al., 2018; Nahirnick et al., 2018). This
method is themost flexible in terms of controlling for environmental variables and flight times; however, it is limited to small
areas of spatial coverage. Depending on the altitude of data collection, imagery resolution can be extremely high (<1 cm)
(Murfitt et al., 2017), allowing visual counts of individual plants and discrimination of species (Murfitt et al., 2017; Nahirnick
et al., 2018). Site-specific studies aiming to estimate parameters such as kelp biomass may be well served by this method.
Costs will include the purchase of an appropriate UAV able to carry the sensor of choice (RGB cameras such as a GoPro® or
higher-end NIR, multispectral and hyperspectral) and GPS; further requirements are related to country-dependent license
and air space limitations. Alternatively, several UAV-based contracting companies are available. In order to accurately process
the images, users will need access to appropriate software to create orthomosaics and georeference the images for use in
classification (see Kislik et al., 2018).

3.1.3. Satellite sensors
Spaceborne multispectral imagers are a feasible choice for detecting floating macro algae due to their relatively low cost,

high spatial coverage, and available archived data. The various satellite sensors used in previous research (Tables 1 and 2) have
differing specifications, and therefore different applications for macro algae detection. Coarse spatial resolution imagery from
MODIS (250e1000m) has been used to create indices for large floatingmacro algae blooms such as Sargassum and Ulva in the
open ocean (Cui et al., 2012; Garcia et al., 2013; Gower et al., 2006; Gower and King, 2008; Hu, 2009; Hu et al., 2015; Keesing
et al., 2011; Shi and Wang, 2009). Medium spatial resolution data from sensors such as Landsat (30m) and SPOT (6m) have
been used for detecting giant kelp (Bell et al., 2015b; Casal et al., 2011; Cavanaugh et al., 2011, 2010; Deysher, 1993). On the
other hand, mapping of nearshore, fringing bull kelp beds requires sensors withmetre to sub-metre spatial resolution, such as
the QuickBird and WorldView series. Hyperspectral sensors are being planned for the future, and will provide high spectral
resolution imagery, which may be necessary to differentiate among species, but have coarser spatial (60m) and temporal
resolutions (Bell et al., 2015b). A proof of concept was the HICO sensor onboard the International Space Station, which has
proven to be effective for differentiating Sargassum from garbage, oil, and other algae (Hu et al., 2015).

There are various procedures for acquiring satellite imagery depending on whether it is freely available or provided by
proprietary satellites. Free imagery, such as the Landsat series and Sentinel, can be downloaded from the United States
Geological Survey (USGS) and European Space Agency (ESA) (https://earthexplorer.usgs.gov/). Several generations of Landsat
satellites have been in operation from 1972 to the present, and while older sensors had lower spatial resolution and differing
spectral bands, the data is a valuable resource and has been utilized by numerousmacro algal studies to understand drivers of
change over long time periods (Anderson et al., 2007; Bell et al., 2018; Nijland et al., 2019). MODIS and MERIS are also freely
available; images cover large areas (185-100 km) but with coarse spatial resolution (�250m). Higher spatial resolution
satellites such as the WorldView Series, GeoEye, and QuickBird are proprietary, and imagery can be bought from archived
databases or tasked for a specific time and location. The cost of a tasked mission is typically a few thousand dollars ($27e45
USD per km2) as there is a minimum order size required.

3.2. Ground-truthing data

For floating macro algae studies, field observations are required to validate remote sensing classifications (Richards and
Congalton, 2001), to train supervised classifications (Casal et al., 2011), and to inform product creation such as biomass es-
timates (Cavanaugh et al., 2010; Stekoll et al., 2006). Ground-truth surveys of kelp are often undertaken by boat, and may
involve using divers if biological parameters such as lengths and weights are needed (Stekoll et al., 2006). Basic requirements
for ground-truth data are an accurate record of where kelp is located in at least a subset of the area to be imaged. Additional
data collected can help with understanding variability within a scene and may include: other species present; physical
conditions such as wind speed, surface conditions, tide height, depth of kelp, Secchi depth, or water turbidity; and bed density
estimates. More detailed data such as individual plant location, length, and wet/dry weights may also be recorded if products
such as biomass are being derived from imagery. For biomass estimates, the location and number of sampling sites may also
have an effect on results. For instance, plots placed in the center of beds may be more representative of site-wide biomass
than those at the edges (Cavanaugh et al., 2010). A key consideration for field surveying is to acquire field data concurrently

https://earthexplorer.usgs.gov/


Table 1
Remote sensing of floating macro algae studies relevant to the detection of bull kelp. Note that this table is not a comprehensive list of all studies, but
presents a sample of relevant techniques from the literature.

Species Sensor(s) Image Processing Classification Study

Ecklonia maxima,
Laminaria pallida

Colour infrared aerial photography,
Landsat 7, Landsat 5

Bispectral and principal component
(PC) analysis

Spectral Angle Mapper, supervised
classification

Anderson et al.
(2007)

Macrocystis pyrifera HyspIRI, Landsat 5, AVIRIS MESMA: multiple endmember
spectral mixing analysis

MESMA threshold Bell et al.
(2015b)

Laminariales spp. SPOT 4 Histogram equalization, band
ratios

Supervised angular, unsupervised
cluster, visual

Casal et al.
(2011)

Macrocystis pyrifera SPOT 5 NDVI, PC analysis NDVI threshold Cavanaugh
et al. (2010)

Macrocystis pyrifera Landsat 5 MESMA MESMA threshold Cavanaugh
et al. (2011)

Macrocystis pyrifera SPOT 1, 2 NIR:RED ratio Density thresholds Augenstein
et al. (1991)

Enteromorpha
prolifera

HJ-1 A/B, ASAR, MODIS NDVI backscattering interpretation NDVI threshold Cui et al.
(2012)

Macrocystis pyrifera SPOT 1, ADAR Histogram normalization, contrast
enhancement, band ratios

Unsupervised cluster, CLUST analysis Deysher (1993)

Macrocystis pyrifera Colour infrared aerial photography N/A Visual interpretation Donnellan and
Foster (1999)

Sargassum spp.,
Syringodium
filiform

PRISM Spectral resampling, NDVI Custom stepwise classification Dierssen et al.
(2015)

Zostera noltii Colour aerial photography (UAV) RGB and texture of green band Unsupervised and OBIA Duffy et al.
(2018)

Macrocystis pyrifera Colour aerial photography N/A Unsupervised classification Fyfe et al.
(1999)

Enteromorpha
prolifera

MODIS Modified SAI on NDVI SAI threshold Garcia et al.
(2013)

Sargassum spp. MERIS, MODIS MCI, FLH Visual interpretation Gower et al.
(2006)

Enteromorpha
prolifera

MODIS, Landsat FAI FAI threshold Hu (2009)

Sargassum spp. MODIS, Landsat, WorldView-2,
HICO, AVIRIS, airborne digital photos

FAI, NDVI, MCI, SI, LD Stepwise classification including
index thresholds

Hu et al. (2015)

Macrocystis pyrifera Landsat, colour infrared aerial
photography, radar

Near Infrared Band Supervised Classification Jensen et al.
(1980)

Enteromorpha
prolifera

MODIS SAI: scaled algae index SAI threshold Keesing et al.
(2011)

Macrocystis pyrifera QuickBird NDVI, panchromatic band Brightness threshold (Kim et al.,
2010)

Enteromorpha
prolifera

MODIS Ratio bands 1 and 2, analysis of
chlorophyll-a product

Index threshold Ma et al. (2009)

Sargassum spp. CASI, thermal infrared imagery Spectral and thermal
interpretation, red-edge
calculation

Red-edge threshold Marmorino
et al. (2011)

Macrocystis pyrifera,
Nereocystis
luetkeana

Colour infrared aerial photography Near infrared reflectance, contrast
enhancement

Visual interpretation Pfister et al.
(2017)

Enteromorpha
prolifera

MODIS NDAI (normalized difference algae
index)

NDAI threshold Shi and Wang
(2009)

Nereocystis luetkeana,
Alaria fistulosa

Colour infrared aerial photography Log transformed, normalized
difference using blue and NIR
bands

ISODATA unsupervised classification Stekoll et al.
(2006)

Laminaria digitata,
Saccharina latissima

Custom airborne hyperspectral
imager

N/A Bayesian supervised classification,
differential histogram equalization

Volent et al.
(2007)
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with imagery acquisition. However, it is often difficult to achieve simultaneous collection, so the time between acquisitions
should be minimized and considered during image processing and interpretation (McCoy, 2005).

Although collecting field data is important for training and for validating a model for classification, it is not always feasible
due to inaccessibility of a study area or when using historical imagery. Alternatively, some studies use data from historical
maps, classified aerial photography, and algae harvesting records (Casal et al., 2011; Cavanaugh et al., 2010; Deysher, 1993;
Donnellan and Foster, 1999). In some cases, such as the pelagic Sargassum survey by Marmorino et al. (2011), alternatives for
field data were not available and accuracy assessment was omitted. Similarly, several studies of the Ulva bloom in the Yellow
Sea proceeded without field data (Keesing et al., 2011; Ma et al., 2009), however, local knowledge was used as the bloomwas



Table 2
Remote sensors used for floating macro algae detection.

Sensor Spatial Resolution (m) Spectral Range (nm) Number of Bands Swath Revisit Time Cost

Satellite Sensors
Landsat 8 15 panchromatic,30 multispectral,100 thermal 430e12510 11 185 km 16 days Free
Landsat 7 15 panchromatic,30 multispectral,60 thermal 450e12500 8 185 km 16 days Free
Landsat-5 (TM) 30 multispectral,120 thermal 450e12500 7 185 km 16 days Free
SPOT-5 2.5 panchromatic,10 multispectral,20 SWIR 480e1750 5 60 km 2e3 days $
SPOT-6/7 1.5 panchromatic,6 multispectral 455e890 5 60 km 1e3 days $
Sentinel 2 10, 20 60 490e1375 13 290 km 5 days Free
WorldView-2 0.46 panchromatic,1.84 multispectral 400e1040 9 16.4 km 1e3 days $
MODIS 250, 500, 1000 405e14385 36 2330 km 1e2 days Free
MERIS 300 390e1040 15 1150 km 3 days Free
QuickBird 0.65 panchromatic, 2.62 multispectral 445e900 5 16.8 km, 18 km 1e3.5 days $
HICO* 90 350e1080 128 45 km Irregular $
HJ-1 A/B 30 430e900 4 360 2 days $
Airborne Sensors
AVIRIS Altitude dependent 400e2500 224 Altitude dependent N/A $
ADAR Altitude dependent 400e1000 4 Altitude dependent N/A $
CASI Altitude dependent 380e1050 288 Altitude dependent N/A $
DMSC Altitude dependent Varied Varied Altitude dependent N/A $
PRISM Altitude dependent 350e1050 >200 Altitude dependent N/A $
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observed by many vessels during the 2008 Olympic sailing preparations. For the same bloom, another study (Cui et al., 2012)
compared satellite-estimated drifting velocity to modelled surface currents as a validation technique in the absence of formal
field observations. In all instances, when field data are omitted or substituted, results should be interpreted with caution due
to increased uncertainty.

3.3. Image processing

Image processing generally consists of preprocessing, processing, classification, validation, and a generated product.
Several software programs are available for imagery processing, including ENVI, PCI Geomatica, ERDAS imagine, eCognition,
for spatial data ArcGIS, open source free software packages are also available: QGIS, GRASS, ILWIS, SNAP, and Google's Earth
Engine.

3.3.1. Preprocessing
Image preprocessing is the correction of systematic errors and calibration of remotely sensed imagery to produce

consistent and comparable data (Schowengerdt, 2012). For macro algae detection, preprocessing steps may differ slightly
among studies, but generally include geometric, radiometric, atmospheric correction (for satellite images), and masking of
land. These steps are fundamental principals in remote sensing techniques, and thorough descriptions can be found in texts
such as Jensen's Introductory Remote Sensing (Jensen, 2005).

3.3.2. Processing
After images have been corrected and masked, information can be extracted with various processing methods. For macro

algae detection, common techniques are development of indices, band ratios, and principal component analysis.

3.3.3. Indices and band ratios
Band ratios and spectral indices (Table 3) aid in macro algae detection by enhancing the differences in spectral responses

(Dierssen et al., 2015). The normalized difference vegetation index (NDVI), developed for terrestrial vegetation, is also used for
macro algae detection due to the spectral similarities between algae and vegetation. NDVI emphasizes the “red-edge” in
vegetation andmacro algae, and reduces environmental influences (Rouse et al., 1974). This index has been used for detection
of Enteromorpha blooms in the Yellow Sea (Cui et al., 2012), floating Sargassum (Dierssen et al., 2015), andMacrocystis biomass
(Cavanaugh et al., 2010). Despite the success of NDVI in the aforementioned studies, this index is limited due to its sensitivity
to atmospheric effects that can vary throughout the field-of-view (Garcia et al., 2013; Shi and Wang, 2009). Several studies
have proposed modified indices to improve upon this limitation (Garcia et al., 2013; Hu, 2009; Huete et al., 1999; Shi and
Wang, 2009). Building on indices developed to reduce atmospheric effects and improve the signal from high biomass
terrestrial vegetation, Hu (2009) developed the Floating Algae Index (FAI) (Table 3) to detect floating algae with MODIS and
Landsat imagery, and found it less sensitive to changes in conditions such as aerosol type, sun glint, and solar geometry
compared to other indices.

Similarly, the Normalized Difference Algae Index (NDAI) was developed to detect Enteromorpha (Shi and Wang, 2009).
NDAI takes into account the NIR and Red reflectance, while also accounting for atmospheric effects by including the influence



Table 3
Indices used for enhancing detection of floating Macro Algae where R¼ reflectance, SWIR, NIR, Red, Green, Blue indicate the bands from the sensors being
used. For full variable definitions, refer to the literature cited.

Index Equation Species Use Limitations Study

NDVI:Normalized
Difference
Vegetation
Index

NDVI ¼ RNIR � RRED
RNIR þ RRED

Enteromorpha
prolifera,
Sargassum,
Macrocystis

Emphasize red
edge

Sensitive to
atmospheric
variation in
scene

(Cavanaugh et al.,
2010; Cui et al.,
2012; Dierssen
et al., 2015)

FAI: Floating
Algae Index

FAI ¼ Rrc;NIR � R
0
rc;NIR

R
0
rc;NIR ¼ Rrc;RED þ ðRrc;SWIR � Rrc;REDÞ � ðNIR� REDÞ=ðSWIR� REDÞ

Sargassum Detect floating
algae with
MODIS and
Landsat

Limited to
sensors with
certain
bands

bib_Hu_2009(Hu,

2009)

NDAI: Normalized
Difference
Algae Index

NDAI ¼ ½RNIR � RayleighNIR� � ½RRED � RayleighRED�
½RNIR � RayleighNIR� þ ½RRED � RayleighRED�

Entermorpha
prolifera

Similar to NDVI
also takes
influence
Rayleigh
scattering into
account

Need SWIR
bands at
1240 nm and
2130 nm

Shi and Wang

(2009)

SAI:Scaled Algae
Index

SAI ¼ NDVIPOI � medianNDVIkernel Ulva prolifera Removes
background
signal from
turbidity, sun-
glint, and
atmospheric
effects

Sensitive to
the size of
the
processing
kernel

Keesing et al.

(2011)

GNDVI: Green
Difference
Vegetation
Index

GNDVI ¼ RNIR � RGREEN
RNIR þ RGREEN

Cyanobacteria
Bloom

Uses green
band instead of
red for NDVI.
Sensitive to
chlorophyll
variation

Best suited
for “green”
vegetation

Goldberg et al.

(2016)

EVI- Enhanced
vegetation
index

EVI ¼ Gain Factor � ðNIR� REDÞ
ðNIRþ C1 � Red� C2 x Blueþ LÞ

Ulva Sensitive to
canopy
variations

More
sensitive to
green algae

Son et al. (2012)

MCI- Maximum
Chlorophyll
Index

MCI ¼ Rrc709 � Rrc681 � ðRrc754 � Rrc681Þð709 � 681Þ=ð754 � 681Þ Sargassum Measures red-
edge
reflectance of
water column
chlorophyll
and floating
vegetation

Designed for
MERIS

(Gower et al.,
2006; Hu et al.,
2015)

Simple Ratio:NIR/
Blue

SR ¼ RNIR
RBLUE

Nereocystis
luetkeana,
Alaria

Detect floating
laminaria
biomass

Unable to
distinguish
between
species

Stekoll et al.

(2006)

Simple ratio: Red/
Green

SR ¼ RRED
RGREEN

Submerged
laminaria
species

Enhances
submerged
vegetation

Less effective
for canopy
detection

Casal et al. (2011)
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of Rayleigh scattering. Although FAI and NDAI succeeded in detecting floating macro algae, their use is limited to situations
where the effect of Rayleigh scattering can be identified and corrected. To improve upon this limitation, the Scaled Algae
Index (SAI) was developed to detect Ulva (Keesing et al., 2011). SAI uses a kernel filter to remove a localized background signal
that includes turbidity, sun-glint, and atmospheric variation from each pixel, resulting in non-algae pixels having near-zero
values, and algae pixels having high contrast with their surroundings.

The FAI, NDAI, and SAI were developed to mitigate the effects of atmospheric and environmental variation throughout
large study areas. As such, these indices are especially suited for large-scale studies that target macro algae covering areas in
the hundreds of metres, capable of being detected with medium to coarse spatial resolution imagery such as MODIS. Due to
the growth patterns of bull kelp, which limit its distribution to relatively small areas close to the coastline, atmospheric
differences throughout the study area are not as significant as those in the large, open-ocean areas typical of MODIS imagery.
However, coastal areasmay experience large spatial variations in turbidity, whichmay be reduced using the SAI index derived
from high-resolution imagery, and modifications of FAI and NDAI using alternative bands on high-resolution sensors may be
useful for detecting bull kelp.

Depending on the characteristics of the survey area, indices created for other applications have been useful for detecting
floating macro algae. Casal et al. (2011) experimented with multiple band ratio combinations to detect submerged kelp using
a band ratio of Red over Green. Augenstein et al. (1991) used a simple ratio of NIR over Red, and Deysher (1993) used NIR over
Green band to detect Macrocystis. Depending on the site conditions and band availability of the sensor used, substitutions of
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bands from established indices may produce better results such as in Stekoll et al. (2006) using the Blue band instead of the
Red band in the NDVI to detect Nereocystis and Alaria.

3.3.4. Principal component analysis
Principal component analysis (PCA) is a statistical technique used to reduce variance and dimensionality of a data set by

transforming image bands into a set of uncorrelated output products, each composed of a combination of the original bands.
The first principal component (PC1) represents the maximum proportion of variance from the data, and each subsequent PC
represents the maximum of the remaining variance. This allows patterns in the data to be identified by accentuating simi-
larities and differences (Gupta et al., 2013). For the purpose of macro algae detection, PCA is beneficial for reducing spectral
noise, and increasing separability between macro algae and its surroundings, which ultimately aids in image classification.
Cavanaugh et al. (2010) found useful information in the different principal components of SPOT 5 imagery: the PC1 accounted
for variations in atmosphere, suspended particles, whitecaps, and waves, and PC2 showed a signal that was inversely
consistent with the expected kelp reflectance and could be used to delineate the canopy.

3.3.5. Classification
Classification of image data results in a spatial representation of kelp aerial extent, which can then be used to derive

products such as biomass, productivity or temporal change, or persistence trends. There are several methods of classification
that have been applied in previous research: supervised and unsupervised classification algorithms, thresholds, object-
oriented segmentation, spectral un-mixing, and manual visual classification. Finally, the results of a classification may
need to be adjusted to remove errors caused by speckling or noise. The final classification results are validated using ground-
truth-based accuracy assessments.

3.3.6. Supervised classification
Supervised classification uses ground-truth data provided by the user to train a classifier according to the classes of in-

terest. This method is best used when the user has high quality field data and wishes to classify several cover types. Various
supervised classification techniques have been used in macro algae studies, including Spectral Angle Mapper (SAM) and
maximum likelihood. The SAMmethod groups pixels into classes based on the angle in spectral space between the value of a
given pixel and the class spectra (Anderson et al., 2007). Themaximum likelihood classification calculates the probability that
a given pixel belongs to a class previously characterized with training data, with the assumption that each class is normally
distributed (Casal et al., 2011; Hogland et al., 2017). Minimum distance classification is similar to maximum likelihood except
that it allows for the use of classes that are not normally distributed (Richards, 2013).

3.3.7. Image threshold
Using image thresholds is a simple technique where threshold values are defined based on the separability of the features

of interest. For example, a threshold value from an original band, PC product, or index is applied to the image, resulting in a
binary product wherein each pixel is identified as either above or below that value. The threshold value may be determined
through defining the value that produces the best output, as compared to validation data or visual interpretation of the
satellite image (Cui et al., 2012; Kim et al., 2010), based on sensitivity analysis (Garcia et al., 2013) or spatial gradient analysis
(Hu, 2009). A basic threshold will produce a binary product of either “kelp” or “not kelp.”

Threshold-based approaches may also consider a stepwise or decision tree procedure that can identify floating macro
algae by ruling out other spectral features (Hu et al., 2015). For example, to discriminate Sargassum from floating seagrass
wrack, Dierssen et al. (2015) applied a stepwise rule with multiple index/band thresholds to first isolate pixels containing
floating vegetation (“vegetation” or “not vegetation”), and then applied a second index threshold to the vegetation class to
differentiate between Sargassum and seagrass. In any threshold approach, a major challenge is threshold variability
throughout the image, which can sometimes be dealt with by scaling image pixels using a kernal-based approach and then
applying a global threshold (Garcia et al., 2013).

3.3.8. Spectral un-mixing
Due to limitations in spatial resolution of images acquired by satellite and the small size of some floatingmacro algae beds,

pixel reflectancemay represent a mixture of signals composed of the target algae and the surrounding seawater. For example,
in a binary classification of floating macro algae, a mixed pixel would be classified as either algae or water, and therefore
inaccuracy in canopy extent and biomass estimations may occur. Cavanaugh et al. (2011) and Bell et al. (2015b) used Multiple
Endmember Spectral Mixture Analysis (MESMA) to address this problem by modelling each pixel in a Landsat image as a
linear combination of giant kelp and seawater using one kelp pixel andmultiple representativewater pixels. MESMAwas then
used to determine the percent of kelp in each pixel. Uhl et al. (2013) used hyperspectral data to determine whether various
species of macro algae could be detected within a mixed pixel and found that, while species level un-mixing was not possible
due to the similarities in reflectance, higher taxonomic levels could be distinguished. For bull kelp detection, spectral un-
mixing approaches may be especially advantageous given the small size of the kelp beds compared to the spatial resolu-
tion of available satellite imagery.
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3.3.9. Object Based Image Analysis
Object Based Image Analysis (OBIA) is a method of classification in which pixels are first grouped into image objects

(Blaschke, 2010). This technique is especially useful in conditions where the spatial resolution of an image is very high
compared to the scale of the target of interest, such as in aerial, UAV, or high resolution satellite images (Blaschke, 2010;
Nahirnick et al., 2018). Instead of classifying images on a pixel-by-pixel basis, image objects are created from groups of
adjacent pixels based on information from spectral bands and contextual information, such as shape, scale, and compactness.
This method can also include other spatial information, such as benthic substrate or bathymetry. Each object can be composed
of pixels with similar digital values and is thus spectrally more homogeneous within the object than between neighbours (Yu
et al., 2006). After segmentation, objects are classified according to a combination of various object features, such as mean,
median, standard deviation, dissimilarity, homogeneity, texture, or spatial relationship to other objects (Blaschke, 2010; Yu
et al., 2006).

3.3.10. Visual interpretation
Visual interpretation techniques can be applied to any type of imagery (Donnellan and Foster, 1999), including images

produced from transformed bands or indices (Casal et al., 2011). This method relies on a user to visually define and delineate
the boundaries of kelp beds. While visual interpretation benefits from its simplicity, it is subjective and may therefore
introduce error. Furthermore, as a non-automated process, it may be more time-consuming and less repeatable than other
classification techniques (Pfister et al., 2017).

3.3.11. Unsupervised classification
Unsupervised classification algorithms do not require ground-truth information for training. A commonly used algorithm,

cluster analysis, groups pixels into classes based on their spectral similarities, and then assigns all possible pixels to the
nearest class (Tou and Gonzalez, 1974). A key consideration is the number of classes selected as an output, which will depend
on the amount of variability in a survey area, where masked images with mostly kelp and water will need fewer classes than
an area with other features such as rocks, boats, docks, etc. A small number of classes may group kelp with other spectrally
similar features in the image, while a large number of classes may divide kelp into several clusters due to differences in
density. Clustering algorithms have been effectively used for kelp classification of both aerial (Deysher, 1993) and satellite
imagery (Casal et al., 2011).

3.3.12. Classification adjustment
Often, the outputs from classifications contain errors caused by digital noise in the image, or classified artifacts that may

need to be removed. For example, Cavanaugh et al. (2010) applied a filter wherein single isolated kelp pixels were assumed to
be incorrect and reclassified as water. The applicability of this technique depends on the spatial resolution of the sensor and
the size of the kelp beds, where errors in classifying small kelp beds will be more difficult to determine.

3.3.13. Validation and accuracy assessment
To evaluate the extent of errors associated with the classification step, an estimate of the overall accuracy is usually

necessary, allowing the classification products to be used in decision-making processes (Richards and Congalton, 2001). In
order to assess accuracy, ground-truth data must exist, which ideally should be collected at the same time as image acqui-
sition. When data are not collected at the same time as image acquisition, close attention must be paid to differences in tide
height, current, and season, as these factors can have major impacts on the mapped extent of macro algae (Britton-Simmons
et al., 2008).

The accuracy of a classification is generally reported in terms of Producers accuracy (errors of commission) and Users
accuracy (errors of omission). These errors are defined based on comparison between classification outputs and validation
data (i.e., ground-truth) and creating a standard errormatrix to report omission and commission errors (Congalton,1991). The
total accuracy is also commonly reported, and is found by dividing the total number of correctly classified pixels by the total
number of pixels considered. A poor outcome from an error matrix may induce reiteration through the classification steps
until a satisfactory outcome is achieved, if possible.

3.3.14. Products
The goals of a monitoring project may include kelp detection (presence/absence), quantification of the spatial extent of

beds, change detection, or deriving biological parameters such as biomass, productivity, and physiological condition. Basic
kelp detection products can be used for temporal analysis or for biomass estimates. For detecting temporal trends, multiple
classification products derived from images collected at different times are used; however, care must be taken concerning
differences in image quality and conditions at the time of imagery acquisition that may affect the accuracy of kelp classifi-
cation between time periods. Differences in tide, water surface, and water column characteristics may create error in the
classified extent of kelp that is not due to the full kelp extent (Britton-Simmons et al., 2008). To overcome some of these
differences, images should be normalized when possible.

Monitoring initiatives that require biomass estimates can give more detailed insight into kelp forest productivity and
response to environmental change (Bell et al., 2015a). To calculate biomass from imagery, physical data such as plant den-
sities, lengths, and weights need to be collected at an appropriate scale (Cavanaugh et al., 2010). This information is then
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related to image derived indices such as NDVI values (Cavanaugh et al., 2010) or kelp fraction (Bell et al., 2015b) through linear
regression. Total or surface kelp biomass can then be calculated from the classified kelp area (Bell et al., 2015a; Cavanaugh
et al., 2010; Stekoll et al., 2006). In California, biomass of giant kelp beds was derived from Landsat imagery using the
MESMA method discussed above, where the percent cover of kelp in each 30m pixel was related to diver estimates of kelp
density using a linear regression (Cavanaugh et al., 2011). Other measures such as sub-bulb diameter of bull kelp have been
used to estimate plant weight, enabling a simpler method of field data collection for use in derived biomass estimates (Stekoll
et al., 2006).

4. Case study: remote sensing of bull kelp in the Salish Sea

This section presents a case study in which methods adapted from the macro algae studies discussed in sections 2 and 3
are adopted for mapping fringing beds of bull kelp in nearshore regions of the Salish Sea on the west coast of Canada.

4.1. Study site

The study site covers approximately 100 km2 in Cowichan Bay and Sansum Narrows in the Salish Sea, on the west coast of
Canada (Fig. 4). In this region, bull kelp is the dominant canopy forming algae often growing in narrow fringing beds along
steep rocky shorelines, at depths between 0 and 20m (Mumford, 2007). Most growth occurs between April and early
September, depending on water and light conditions (Mumford, 2007; Springer et al., 2007). Canopies may be maintained
until fall or early winter depending on the sea and temperature conditions (Springer et al., 2007).

4.2. Methods

4.2.1. Step 1: imagery acquisition and ground-truthing
AWorldView 3 satellite image covering approximately 100 km2with four multispectral bands (480, 545, 660, 832 nm) and

1.8m spatial resolution was planned for acquisition by DigitalGlobe on August 30th, 2016. Conditions required for successful
collection were: tide height lower than 1.2m MLLW, specified by the ground-truth methods as the tide height where the
majority of the kelp canopy should be visible at the surface; sensor angle less than 15 degrees off nadir; minimal cloud cover
(<5% over shoreline); and low wind conditions (<10 m/s).

At the same time that image collection occurred, ground-truthing of kelp extent over a subset of the area was conducted
using kayak and handheld GPS methods following Fretwell and Boyer (2010). Three teams of two person crews started from
different locations and paddled kayaks along the shoreline for 1 h before, during, and 1 h after the low slack tide of 1.1m
MLLW. Kelp location was recorded by handheld GPS (Garmin 64s) as either a point (single bulb, or several bulbs in close
proximity <1m2), line (continuous kelp less than 5m wide), or polygon (continuous kelp more than 5m wide). Beds were
considered distinct if there was a distance greater than 8m between kelp plants. All data was digitized in ArcGIS into
shapefiles for use as training and validation data.

4.2.2. Step 2: pre-processing
Initially, the acquired image was georectified in BC Albers NAD 83 with ArcGIS 10.5 using 30 ground control points,

producing a final average root mean square error (RMSE) of 0.28m. Next, the raw digital numbers were converted to at-
Fig. 4. Left: Regional context of study area (black box) Cowichan Bay and Sansum Narrows on the east coast of Vancouver Island, British Columbia, Canada. Right:
extent of study area, covering Cowichan Bay and Sansum Narrows.
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satellite radiance (Ll in units of mW/cm�2 sr�1 nm�1 equation (1)), and an absolute atmospheric correction was applied using
the FLAASH® (Fast Line of Sight using Hypercubes) tool in ENVI (Matthew et al., 2000).

Ll ¼Gain*Pixel valueþ Offset (1)
A land mask was created using object-based segmentation with Definiens eCognition to allow for separation of land from
water; the NIR, Red, and Green bands were used as inputs, and spectral characteristics were given greater weight than spatial
characteristics for defining objects. This method resulted in a more accurate definition of the coastline than the use of
published coastline shapefiles, which do not reflect the tide level occurring at the time of image acquisition. A 4-m buffer was
added to the defined land mask to account for occurrence of nearshore vegetation such as Fucus and Ulva, as well as removal
of adjacency effects and pixel mixing caused by the proximity of terrestrial vegetation to the shoreline. While this method
produces a reliable mask of the exact shoreline location, and thus allows for effective masking of land classes that may in-
fluence the classification, it will also potentially mask kelp located within 4m of the shoreline. Kelp in such close proximity to
the shoreline is not likely to be resolved from other algae species in the nearshore due to similarities in reflectance. It is
preferable to mask this area rather than to misclassify the shoreline algae as kelp. Finally, a 30m deep-water mask was
applied using bathymetry contours created from single and multi-beam sonar data acquired from the Canadian Hydrography
Service for coastal British Columbia. This mask represents the depth at which kelp will not be found in this region (Springer
et al., 2007). Together, the masks minimize erroneous classification introduced from land, shoreline algae, glint, waves, and
water column constituents.

4.2.3. Step 3: image processing

4.2.3.1. Index selection. To explore the best possible bands and band ratios for separating kelp from other features, the Jeffries-
Matusita Distance (JMD) statistical separability analysis (Swain and King, 1973) was applied to all the applicable indices and
transformations available in the literature (Table 3). Some indices discussed in the literature could not be applied due to the
limitations of band availability for the WorldView 3 image. The following products were analyzed: NDVI, GNDVI, SAI, EVI,
simple ratios as well as PC outputs, and the Blue, Green, Red, and NIR reflectance bands. According to the JMD analysis, the
products selected as best able to identify kelp / NDVI, GNDVI, and PC1 / were further linearly enhanced to maximize
spectral differences and minimize noise, and then used as input for classification.

4.2.4. Step 4: classification
To illustrate the feasibility of using different classification techniques with different levels of user input, four types of

supervised methods, minimum distance (MD), decision tree threshold (DT), spectral un-mixing (SU), and object-based image
Table 4
Error matrices for MinimumDistance (MD), ISODATA (ISO), Decision Tree (DT) spectral unmixing SU, and OBIA classification results for bull kelp in the Salish
Sea.

Ground-truth Total Accuracy

Kelp Not Kelp Total User Accuracy

Classification MD Kelp 409 42 451 90.7 90.7
Not Kelp 37 358 395 90.6
Total 446 400 846
Producers Accuracy 91.7 89.5

ISO Kelp 376 83 459 81.9 86.9
Not kelp 28 362 390 92.8
Total 404 445 849
Producers Accuracy 93.1 81.4

DT Kelp 385 75 460 83.7 87.9
Not Kelp 27 359 386 93.0
Total 412 434 846
Producers Accuracy 93.5 82.7

SU Kelp 399 62 461 86.6 88.5
Not Kelp 34 343 377 91.0
Total 433 405 838
Producers Accuracy 92.2 84.7

OBIA Kelp 333 121 454 73.4 82.5
Not Kelp 27 364 391 93.1
Total 360 485 845
Producers Accuracy 92.5 75.1
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analysis (OBIA), and one unsupervised method, ISODATA (ISO), were compared. All classifications used a composite of NDVI,
GNDVI, and PC1 as input.

For the supervised methods, MD used training data derived from ground-truth and expert knowledge to define six classes
(kelp, water, glint, shallowwater, bright objects, and shadow)with at least 100 pixels each. The DT used thresholds defined by
the mean of the same class samples ±2 standard deviations. The SU was defined based on adapted methods from Cavanaugh
et al. (2011), in which the matched filtering tool in ENVI was used to un-mix pixels. Spectral endmembers for dense kelp (50
kelp endmembers) andwater (120water endmembers) were selected from the image based on ground-truth data and known
reflectance characteristics of kelp and water. The result is a grey scale image for each endmember representing their
approximate subpixel abundances, where a value of 1.0 would represent 100% kelp. Based on the ground-truthing data and
known spectral reflectance of kelp and water, a kelp minimum fraction threshold of 0.142 was defined. All pixels with a
fraction lower than 0.142 were classified as water. OBIA was applied using Definiens eCognition® Version 8. As commonly
used in object-based classification, trials for different weights for parameters of scale, shape, and compactness were con-
ducted to determine the optimal approach for the segmentation (Evans et al., 2014). Defined parameters were considered
acceptable if areas of known kelp beds were captured as a single object, rather than broken into several objects or combined
with areas of non-kelp. The resulting image objects were classified using a supervised nearest-neighbour approach for the six
classes defined above. For the unsupervised ISO method, multiple classification trials were performed to define the combi-
nation of parameters and number of classes needed to yield the best results.

4.2.5. Step 5: accuracy assessment
The output product of each classification was converted into two binary classes, kelp and non-kelp, where all non-kelp

classes defined through classification were combined into one class. A stratified random sample approach was used to
define 500 validation pixels per class from the ground-truth data, and an error matrix was produced (Table 4). The selection of
the validation pixels also considered the uncertainties in the ground-truth data due to the accuracy of the handheld GPS
(±9m), displacement of kelp beds of up to 1m related to changes in tide and current and bias or inaccuracy of the kayak
surveyors. A 10m buffer was added to the kelp ground-truth polygons (Fig. 6) to accommodate for these possible un-
certainties, and no samples in this regionwere used for either the kelp or the non-kelp classes, reducing the number of pixels
for validation to a range between 400 and 485 for each class.
Fig. 5. Result of minimum distance (MD) supervised classification with total accuracy of 90.7.
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4.3. Results and discussion

All five classification methods performed relatively well in detecting kelp beds. For total accuracy, MD (90.7%) and SU
(88.5%) yielded the best results (Fig. 5), followed by DT (87.9%), ISO (86.9%), and OBIA (82.5%) (Table 4). The classification
products showed high fidelity when visually compared to the shape and location of ground-truthmaps (Figs. 6 and 7), and the
total accuracies are comparable to other studies which reported values between 74% and 94%, depending on the density of the
kelp (Casal et al., 2011; Fyfe et al., 1999).

For all classification outputs, accuracy was generally the highest in areas where kelp was dense and beds were large, as
illustrated in Figs. 6 and 7. In these regions, the detected spectral signals better represent kelp due to less mixing with the
spectral signal of water (see Fig. 1 for spectral signal of dense kelp vs sparse kelp). Conversely, in areas where kelp was sparse,
kelp detection was less reliable due to spectral signal mixing with water. The greatest error happened in areas in which
Fig. 6. Classification results for the MD, DT, SU, OBIA, and ISO classifications on a subset of the true colour WorldView 3 image for bull kelp in the Salish Sea. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)



Fig. 7. Errors in classification methods for submerged vegetation, shadow, bright objects, sparse kelp beds, and dense kelp beds in the Salish Sea (Legend
provided in Fig. 6).
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submerged vegetation such as eelgrass was classified as kelp. The reflectance spectra of submerged kelp and eelgrass with
high epiphytes loads are very similar when using only four spectral bands (O'Neill and Costa, 2013). Alternatives for mini-
mizing this error include using hyperspectral data to improve the spectral separability between species and/or masking areas
of soft substrate where kelp is unlikely to occur. Misclassification also occurred between the shadow of terrestrial vegetation
on the water, as seen in Fig. 6. Despite the 4m buffer, the shadow of terrestrial vegetation was not removed in some areas
during the masking process, likely due to large shadows caused by the height of trees, sensors viewing angle, and sun
illumination angle (Fig. 7).

Among the supervisedmethods, theMD classification produced the best results due to its use of high-quality ground-truth
data and consideration of the mean of training classes in the minimum distance algorithm. Similarly, the spectral un-mixing



Table 5
Selection of classification methods based on quality of input parameters.

Data
Quality

Study Site Characteristics Ground-truth Data Sensor Type and Resolution Classification Type

Ideal Large dense kelp beds, far from shoreline Collected at same day and time as
imagery

Mid-high resolution 30m
e2m

OBIA, MD, SU, DT,
ISO

Large sparse beds, small beds, near shoreline Collected during same season High resolution (<10m) MD, SU, DT, ISO
Poor Small beds, fringing, close proximity to

shoreline
No ground-truth High resolution 2m ISO
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method yielded good results. In this method, the best results will occur when pure pixels of each class are used to establish
the un-mixing algorithm. The decision tree classification applied user-defined thresholds to classify pixels, which can
introduce bias on class definition. Adjusting threshold values or including additional classes where misclassifications occur
may improve the results. The poorest results were obtained with the OBIA approach. The small size, irregular shape, and
sparse nature of the kelp beds resulted in objects containing a range of kelp and water extents. In these conditions, the mean
of each object mostly represents the mixing of spectral signals corresponding to water and kelp. Depending on ratio of kelp
and water, image objects containing kelp may be classified as water, thus causing larger error compared to pixel-based
classification. In areas where kelp beds are large and dense, OBIA will likely perform better as image objects will more
accurately represent kelp spectral signatures and have a uniform nature. The unsupervised ISODATA method performed well
with both dense and sparse kelp beds, as the iterative clustering algorithm is most affected by the difference in spectral
signals between cover types rather than their spatial relationship. This method is advantageous where there is a lack of
ground-truth data, such as when analyzing historical imagery. However, knowledge of the site characteristics or spectral
signature of cover types is still required to label the resulting classes.

Table 5 summarizes the choice of image classificationmethods based on the characteristics of the study sites and available
ground-truth information. Specifically, sensors will depend on the size and location of beds, where large offshore beds can be
detected with medium resolution sensors and smaller nearshore beds will require higher resolution imagery. As kelp beds
become sparse, fringing, or small, classification techniques such as supervised minimum distance yield the most robust
results. Additionally, the quality of the ground-truth data affects the choice of classification method, with high quality data
acquired concurrent to image acquisition being ideal for all classification techniques. If ground-truth data is unavailable,
unsupervised ISODATA classification is the most appropriate choice. However, for any of the classification approaches,
environmental conditions during the time of image acquisition, including tide height, currents, water surface roughness,
turbidity, and sensor angle will also have effects on the accuracy of the classifications.

5. Conclusions

Remote sensing technologies and imagery processing methods are continuously advancing, allowing for improvements in
macro algae detection. Specifically, for kelp mapping and biomass indicators, ongoing research is developing new techniques
for deriving ecological information from remotely sensed kelp beds. With increasing sources of high-quality data, automated
classification methods are being developed for use with free data sources such as Landsat (Bell et al., 2018; Nijland et al.,
2019), allowing for long term monitoring and detection of large kelp beds with global scale potential. Ultimately, these
data sets are crucial to understanding environmental drivers of kelp distribution and abundance, and how they relate to
ecosystem functions affecting biodiversity, community structure, and productivity.

With the growing availability of high spatial resolution images, such as WorldView, SPOT, and GeoEye sensors, the ac-
curacy of detecting small patches of fringing kelp along nearshore zones has increased. However, for successful use of remote
sensing, considerations concerning the environmental conditions at the time of image collection, such as tide height, cur-
rents, waves, kelp extent, and imagery analysis techniques are of utmost importance. Additionally, the scale of areas able to be
studied may be limited by the smaller coverage and greater costs of higher resolution imagery. Here, we present a literature
review and a case study demonstrating how high-resolution satellite imagery can be used effectively for mapping at regional
scales by applying imagery-processing techniques adapted from the literature. By using appropriate methods suited to the
characteristics of the area of interest, we are able to accurately detect floating kelp beds and create maps of kelp distribution
for nearshore systems. Specifically, among the evaluated indices and classification methods, the supervised minimum dis-
tance classifier with input of NDVI, GNDVI, and PC1 produced the map with the highest accuracy (90.7%). For monitoring that
requires temporal analysis without ground-truth data, unsupervised ISODATA can also produce accurate results. This case
study illustrates a systematic method that can be transferred to others areas of theworld where species form small or fringing
beds.
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