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Abstract

Bull kelp Nereocystis luetkeana is an important foundation species, providing

structural habitat and nutrients to the nearshore ecosystems of temperate

coastal regions in the Northeast Pacific. Sensitive to environmental conditions,

this species thrives in cool, nutrient-rich water. Reported declines in the extent

and distribution of bull kelp may reflect changing oceanic conditions and result

in breakdown of important food chains and ecosystem services. This study uses

satellite remote sensing to map kelp bed extent from 2004 to 2017 in the Salish

Sea on the West Coast of British Columbia, Canada and examines the relation-

ship between trends in kelp persistence with local and global scale environmen-

tal conditions. In our study area, we found limited evidence of kelp decline.

Local scale effects of current speed, temperature and substrate type may play a

role in the spatial and temporal patterns of persistence. Kelp persistence was

higher in sites with rocky substrate and lower in areas with low current and

gravel or sand substrate. A decline in kelp was recorded from a high in 2015 to

a low in 2017; however, a longer and more complete record is needed to distin-

guish declining trends from natural variability. This work highlights the impor-

tance of continued collection of long-term data for use in time series of kelp

abundance as multiple factors can influence the reliability of image interpreta-

tion and kelp classification.

Introduction

As one of the most productive ecosystems on the planet

(Steneck et al. 2002; Krumhansl and Scheibling 2012),

kelp forests support high biodiversity, providing protec-

tion, habitat and foraging opportunities for invertebrates,

fish, birds and mammals (Estes et al. 1989; Christie et al.

2009), and as such are an important indicator of ecosys-

tem health (Claisse et al. 2012; Uhl et al. 2016). Further-

more, the physical structure of kelp beds influence

coastlines through dampening of waves and providing

nutrient subsidies to shorelines as wrack (Teagle et al.

2017).

Globally, kelp species are found growing on rocky reefs

in temperate coastal regions, in response to abiotic dri-

vers: temperature, nutrient, photosynthetically active radi-

ation (PAR), substrate type, current and wave stress

(Cavanaugh et al. 2011), and biotic: grazing and competi-

tion (Duggins 1980). Optimum growth conditions hap-

pen in cool nutrient-rich waters, associated with

temperate coastal regions; however, prolonged periods of

warmer than average temperatures (>17°C) reduce spore

production and cause kelp die-off (Vadas 1972; Schiel

et al. 2004). Beyond increased ocean temperatures, other

stressors including increased storm frequency, direct har-

vest and the effects of overfishing contribute to collapse

of kelp ecosystems (Halpern et al. 2006; Lorentsen et al.

2010; Hern�andez et al. 2018). The degree to which these

stressors influence kelp varies, with regional differences

playing a key role and an overall downward trend of

abundance worldwide (Krumhansl et al. 2016).

Specifically, run-off associated with anthropogenic

activities such as agriculture and forestry increases sedi-

ment loads in river effluent and has strong negative
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impacts on kelp beds through the reduction of PAR and

smothering of recruits (Shaffer and Parks 1994; Carney

2005). Disturbance caused by wave and current can also

have large impacts on the abundance of kelp, where areas

of low current may leave kelp more susceptible to her-

bivory and high current or wave exposure may limit

growth due to physical removal (Reed et al. 2011). In

regions where predators such as sea otters or predatory

fish have been removed through over-fishing, herbivores

such as urchins thrive and have significant impacts on

kelp bed size and abundance through unchecked grazing

(Steneck et al. 2002; Foster and Schiel 2010). Addition-

ally, changes in environmental conditions, which are

unfavorable for kelp growth, may give rise to dominance

by other species, such as coralline and turf algae resulting

in a shift to altered stable states (Filbee-Dexter and Wern-

berg 2018). Increased herbivory and warmer ocean tem-

peratures can combine to cause major declines in kelp

forest abundance (California Department of Fish and

Wildlife, 2016; Burt et al. 2018).

These different kelp stressors have been reported for

several regions of the world. In the Salish Sea, on the

West Coast of North America, one of the dominant

canopy-forming kelps, bull kelp (Nereocystis luetkeana)

(Druehl 1968) has shown variability in abundance with

most declines recorded in regions adjacent to dense urban

areas (Pfister et al. 2018). Fluctuation in abundance has

also been linked to both broad scale oceanic conditions

such as the Pacific Decadal Oscillation and North Pacific

Gyre Oscillation, and to local scale impacts on water

quality, temperature and increased herbivory (Taylor and

Schiel 2005; Foster and Schiel 2010; Burt et al. 2018; Pfis-

ter et al. 2018).

Differences between global and local scale changes in

kelp abundance may reflect regionally dependant influ-

ences where the local effects of grazing pressure, water

quality and possible resilient populations interact with

large-scale environmental fluctuations, which result in

decline, reduced resilience or alternative stable states

depending on the combination of factors (Krumhansl and

Scheibling 2012). Understanding the drivers, their out-

comes and effects on associated ecosystems requires both

long-term and large-scale maps of kelp abundance. Map-

ping kelp extent has been a requirement for conservation

and monitoring initiatives including quality of salmon

habitat (Shaffer 2004), creation of marine protected areas

(Airam�e et al. 2003), regulating harvest impacts (Suther-

land et al. 2008), oil spill impact monitoring (Peterson

et al. 2003) and climate change adaptation services pro-

grams (Duarte et al. 2013).

Satellite imagery has been successfully used to map spa-

tial-temporal changes in canopy kelp (Deysher 1993; Ste-

koll et al. 2006; Young et al. 2016). Many of these

successful analyses focus on species that form large beds,

such as giant kelp, Macrocystis pyrifera, allowing the use

of lower spatial resolution imagery from Landsat (Cava-

naugh et al. 2010). However, detecting bull kelp, which

may form fringing beds adjacent to the shoreline, may

require high spatial resolution satellite, aerial or drone

images ranging from 0.2 m to 2–4 m in resolution

(Deysher 1993; Schroeder et al. 2019). This study uses a

time series of high-resolution satellite imagery from 2004

to 2017 to map bull kelp beds on the West Coast of Bri-

tish Columbia, Canada, and provides an analysis of

changes in kelp persistence and its relationship to global

and local scale environmental conditions.

Materials and Methods

Study area

The study area covers approximately 50 km of coastline in

Cowichan Bay and Sansum Narrows, located in the Salish

Sea on the West Coast of British Columbia, Canada

(Fig. 1). Tides in this semi-enclosed body of water are

mixed semi-diurnal with exchange of water from the open

ocean through the Straits of Georgia and Juan de Fuca.

Freshwater inputs come from the Cowichan and Koksilah

Rivers directly into Cowichan Bay (450 m3 s�1 during peak

flow in winter) as well as input from the Fraser River to the

east (10 000 m3 s�1 during spring freshet). In summer,

warm ocean temperature and peak flow from the Fraser

River create stratification in the water column in the Strait

of Georgia, which leads to increased surface water tempera-

ture (14–21°C) and decreased salinity (26–28 PSU) (Waldi-

chuk 1957; Chappell and Pawlowicz 2018). However, water

flowing through the Southern Gulf Islands with localized

regions of high currents due to the narrow channels

between the islands, tends to have increased mixing than

that in the Strait of Georgia, resulting in slightly lower tem-

peratures and higher salinity (Waldichuk 1957).

The coastline in this region consists of rocky cliffs,

mixed gravel beaches, sand and mudflats on which several

species of aquatic vegetation grow. These habitats support

a number of commercially and ecologically important

species including Chinook Oncorhynchus tshawytscha and

Coho Oncorhynchus kisutch salmon, whose populations

have declined precipitously in recent years and for whom

loss of habitat including kelp may be a contributing factor

(Waldichuk 1957).

Imagery database

A time series of high-resolution imagery from 2004 to

2017 were selected from the Digital Globe archives con-

sidering the preliminary criteria: spatial resolution of
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2.5 m or higher, spectral resolution containing visible and

near infrared (NIR) bands, minimal clouds and acquisi-

tion during peak kelp growth in summer. This selection

resulted in eight images (Table 1). From these images,

further criteria were developed to determine the reliability

of the images for accurately mapping kelp. Similar to the

methods by Nahirnick et al. (2019), each image was

scored from 1 to 3 with one being the poorest condition,

according to the following criteria: (1) time of collection

within the growing season; (2) tide height, where lower

tides allow for better ability to detect kelp floating on the

water surface; (3) intensity of glint on the water, where

high glint obstructs the ability to detect kelp; (4) water

surface roughness (WSR), which describes the texture of

the water surface, where calm flat water is best for detect-

ing kelp and breaking waves or white caps present diffi-

cult conditions (Table 2). The total score (maximum of

12) for each image was calculated and images with scores

lower than seven were deemed too unreliable for kelp

detection. Due to constraints in the overlap among all

images, only five of the seven images meeting the quality

criteria were used for further analysis (Table 1). This

method resulted in selected images acquired in 2004,

2012, 2015, 2016 (tasked with concurrent field data), and

2017. Finally, the scores from the images which qualified

for analysis were used to assess whether image quality

played a role in the resulting kelp maps.

In situ dataset

The in situ data set comprised of a kelp survey and

above-water reflectance data acquisition. Field data acqui-

sition was conducted during the time of the 2016 image

acquisition using kayak and GPS methods following

Figure 1. Study area including Cowichan Bay

and Sansum Narrows on the East Coast of

Vancouver Island, British Columbia, Canada.

Red polygons are kelp beds delineated by a

kayak-based field survey in August 2016.

Hatched lines indicate the total area covered

by the kayak-based field survey in August

2016.
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Fretwell & Boyer, (2010) covering North and South Cow-

ichan Bay and West Sansum Narrows to Maple Bay

(Fig. 1). Three teams of experienced mappers and volun-

teers with hand-held GPSs paddled along the shoreline

during the mapping window of one hour before and after

low slack tide (1.1 m). All canopy kelp floating on the

water’s surface was recorded as either a single bulb, mul-

tiple bulbs, line of kelp or a bed. The GPS points were

digitized and used to create kelp polygons in ArcGIS for

use as data in validation of classification methods. Possi-

ble uncertainties associated with this field data are: (1)

error in the GPS units, which recorded accuracy between

1 and 9 m, (2) errors in the kayakers’ ability whereby

points may not be exact due to the nature of collecting

data in a moving platform with currents, waves and in

close proximity to rocky outcrops, and (3) changes in the

location of kelp between the time of the field survey and

the acquisition of the image due to differences in tide

height and current speed. Due to these issues, a 10 m

uncertainty buffer was added around the field-derived

kelp polygons, and points extracted for use in training or

validation of classification were not collected in this buf-

fer.

Above-water in situ kelp and water spectra were col-

lected in the field to record the spectral characteristics of

different combinations of kelp and water for further anal-

ysis of the classification results. A calibrated hand-held

FieldSpec� spectroradiometer with a spectral range from

325 to 1075 nm was used to collect spectra of various

densities of floating kelp, deep water and kelp submerged

within approximately 20 cm of the water surface in

August 2017. A sample number of n = 10 was collected

for each kelp-water combination of dense, sparse, sub-

merged kelp and pure water under conditions of clear sky

and calm water. Spectral measurements were acquired by

boat within and beside kelp beds in the study area with a

sensor viewing geometry of 1 m from the water’s surface,

held at a 45° angle zenith, and 90° azimuth to incoming

solar radiation to prevent specular reflection (Adler-

Golden et al. 1999). Reflectance measurements were aver-

aged, and four classes were defined as dense (>50% of the

sensors field of view (FOV) covered with kelp), sparse

(<50% of FOV), submerged and pure water (Fig. 2). The

spectral signature of kelp shows high reflectance in the

near-infrared (NIR) and low reflectance in red bands,

while sparse or submerged kelp beds show lower ratio of

NIR to red due to the effect of water, which strongly

absorbs NIR (detailed spectral analysis in (Schroeder et al.

2019)).

Image processing

Image processing methods included geometric, radiomet-

ric and atmospheric correction, masking, image enhance-

ment, transformation and classification. First, historical

images were georectified using the 2016 geometrically

corrected image as reference, resulting in root mean

square errors of less than 0.06 m. Next, images were

radiometrically corrected and atmospherically corrected

(Adler-Golden et al. 1999) using the FLAASH module in

ENVI v5.5, to minimize atmospheric effects and convert

radiance signal to surface reflectance. To ensure that the

reflectance values were comparable to the 2016 base

image, all historical images were normalized using

Table 1. Quality parameters for all images in database.

Sensor Spatial resolution Year Date Tide height Glint WSR Score

QB 2.6 m 2004 Sept 24th 1.8 m None Minimal 10

WV2 1.8 m 2012 July 29th 1.5 m Medium Medium 9

WV2 1.8 m 2015 August 27th 1.2 m Minimal Minimal 12

WV3 1.2 m 2016 August 30th 1.2 m Medium Medium 10

WV3 1.2 m 2017 July 27th 1.5 m Minimal Minimal 11

Sensors are QB = QuickBird series, WV = WorldView series.

WSR, Water surface roughness.

Table 2. Image reliability scoring metrics

Score Season Tide height Glint WSR

Ideal (3) Late July to early September ≤1.2 m No glint Smooth calm water

Medium (2) Mid-June to late July or mid-September to

late September

1.3–2 m Some glint Some surface texture

Poor (1) Before mid-June or after September >2 High glint throughout image Breaking waves

WSR, water surface roughness.
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pseudo invariant features with the 2016 image as refer-

ence (Fig. 3). This procedure allows for reflectance spec-

tra of features of interest to be comparable for the

different years, and therefore improving the performance

of the classification results (Bao et al. 2012). Despite

these corrections, water reflectance varied slightly from

year-to-year likely due to differences in characteristics of

optical constituents in the water (Fig. 3). This variability

will be reflected in the spectral response of any image

pixels containing kelp as the reflectance of each pixel is

a product of the ratio of kelp and water as established

in Figure 2.

Following normalization, a land mask was created for

each image, using object-based image segmentation with

Definiens eCognition� using the NIR (band 4), Red

(band 3) and Green (band 2) bands as input to accentu-

ate the contrast between the high reflectance of terrestrial

vegetation and rocky shoreline compared to the low

reflectance of water along the shoreline. A 4 m buffer was

added to the resulting land mask to eliminate adjacency

effects from terrestrial vegetation and the presence of

other nearshore algae such as Fucus spp. and Ulva spp.

This masking method allowed precise delineation of the

shoreline at the slightly different tide levels present

between images. Next, a deep-water mask was applied

using the 30 m isobaths created using multibeam data

acquired from the Canadian Hydrographic Service. This

represents the maximum depth at which kelp generally

grows in this region (Springer et al. 2007).

After applying the unique masks to each image, the

reflectance-based products were defined for optimizing

input to the classification. A series of possible indices,

reflectance transformations and reflectance bands were

tested for effectiveness in separating kelp from other cover

types using the 2016 image and a subset of the field sur-

vey data. Using the Jefferies-Matusita distance statistical

metric (Padma and Sanjeevi 2014), NDVI (Eq.1) and

GNDVI (Eq.2) were defined as best able to separate kelp

from water, glint, shallow substrate and terrestrial vegeta-

tion in shadow. NDVI is the normalized difference vege-

tation index developed to enhance the detection of

vegetation (Rouse et al. 1974) and is applicable to bull

kelp due to kelp’s similar reflectance properties (Fig. 2);

GNDVI or the green normalized vegetation index uses

the green wavelengths instead of red, and is more sensi-

tive to chlorophyll concentrations than NDVI (Goldberg

et al. 2016).

NDVI ¼ NIR� Red

NIRþ Red
(1)

GNDVI ¼ NIR� Greenð Þ
NIRþ Greenð Þ (2)

Additionally, a principal component analysis (Gupta

et al. 2013) showed that PC1 was advantageous because

Figure 2. Representative reflectance of dense

(>50% of FOV), sparse (<50% of FOV),

submerged kelp and ocean water measured

with a Fieldspec Pro� spectroradiometer in the

coastal waters of British Columbia, Canada

(source: Schroeder et al. 2019).
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of its ability to separate kelp from shadow over water that

was not previously masked due to its similar reflectance

to kelp. These indices and transformations were combined

as input for classification.

Classification

The unsupervised ISODATA classification method (Tou

and Gonzalez 1974) was deemed reliable for classification

of historical imagery as it can be used without field sur-

vey data, which was only available for 2016. This method

was tested against several classification methods using the

2016 image and concurrent field survey data, and the

results showed that the ISODATA approach performed

similarly to supervised methods (Young et al. 2016).

The ISODATA classification produced several classes

for each image (8–12) and reflectance spectra for each

class were compared to the known spectra for dense and

sparse kelp derived from the 2016 image and in situ

above-water spectra. These relationships were used to

determine which of the defined classes should be catego-

rized as kelp and then statistically confirmed in the vali-

dation step (Fig. 4, Table 4). Finally, a filter to remove

single isolated pixels identified as kelp that were separated

by greater than eight pixels was applied; this situation

may happen due to glint.

After the classification, the resulting kelp maps were

validated following two distinct procedures due to avail-

ability of in situ data: (1) 2016 image, accuracy assess-

ment based on concurrent in situ samples and (2) for the

other years without concurrent field data, a statistical

approach was taken. For the 2016 image, a confusion

matrix was constructed using 849 randomly selected sam-

ples from the field data for accuracy assessment, and an

error matrix was constructed to determine users, produc-

ers and total accuracy. For the remaining images (2004,

2012, 2015, 2017), accuracy assessment was accomplished

using the non-parametric Wilcoxon signed-rank test

(Taheri and Hesamian 2013) to determine whether pixels

classified as kelp in both, 2016 reference image versus his-

torical image, were spectrally statistically similar. First, a

random sample of pixels (n = 500) from the classification

results was collected for each image and the spectral

information from NDVI and GNDVI were extracted. PC1

values were not compared, as they are a function of the

data within a scene and not expected to remain similar

between images (Schowengerdt 2012). The analysis takes

into consideration that the output ranges of NDVI and

GNDVI are a function of the proportion of highly reflec-

tive kelp in the NIR to highly absorbing water within

each pixel.

Change analysis

Several factors affect the accuracy of measuring changes

in kelp extent derived using satellite-based methods,

including:

1 Differences in the kelp extent in a given area from

year-to-year. This may be caused by the dynamics of

Figure 3. Example of normalization for water based on the 2016 corrected image (2016 Reference), and results before (RrsATM) and after

normalization (RrsNorm) for each image year. Note the generalized decreased reflectance in band 1 (blue spectra) between RrsATM and RrsNORM

showing improved Rayleigh correction, and the expected low and high band 4 (NIR) reflectance for water and kelp, respectively.
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the environment during the growing season including

temperature, nutrients, PAR and biotic interactions

(Springer et al. 2007), as well as growing conditions in

the previous year or years affecting the production and

viability and settlement of spores (Cavanaugh et al.

2011; Pfister et al. 2018). This would be considered a

true change in kelp extent.

2 Differences in the timing of peak kelp growth due to

growing conditions from year-to-year. As bull kelp is

an annual species, the timing of peak kelp growth

may have natural variability from year to year

depending on the growing conditions, including tem-

perature, nutrient and light availability (Springer et al.

2007). Extended periods of warm surface waters may

also cause early die off in populations where peak

growth is usually in late summer (Mumford 2007;

Simonson et al. 2015). In this case, images collected

prior to or after peak growth may underestimate max-

imum kelp extent.

3 Differences in image quality due to environmental con-

ditions at the time of acquisition including tide height,

glint and water surface (Schroeder et al. 2019). Effects

of currents can cause changes to surface kelp extent on

an hourly and even minutely basis (Britton-Simmons

et al. 2008). In this case, maximum kelp extent is pre-

sent but is obscured by waves, glint or water column

and is not detected in the image.

Together, these factors add complexity and uncertainty

on how to define change in kelp extent based on area

derived from image pixels. Satellite images offer a “snap-

shot” of kelp extent, which may only represent a portion

of the total kelp present in a given season depending on

the conditions explained above. To overcome this prob-

lem, we adopted a method similar to that used in Pfister

et al. (2018) in which shoreline units were used to ana-

lyze changes in kelp. We divided the study area into

100 m bins (shoreline units) taking into consideration

the characteristics of the region, including the exposure,

orientation and the average size of kelp beds data from

the British Columbia Marine Conservation Analysis

(BCMCA) (British Columbia Marine Conservation Anal-

ysis Project Team, 2011), in situ observation and field

data. Within each bin, the number of times kelp was

mapped over all the images was defined and expressed

as a kelp persistence measure. For instance, a persistence

of 100% indicates that kelp was present in a bin in all

years analyzed. Note that due to the limited spatial cov-

erage of the 2004 image, the east side of Sansum Nar-

rows (Fig. 5) was analyzed separately using the

remaining four images (2012, 2015, 2016, and 2017); for

this area, 100% persistence equals to kelp present in

4 years. Drivers of spatial and temporal kelp persistence

were considered based on known factors that influence

kelp growth and reproduction and data availability.

High-resolution data of substrate and current strength

allowed sub regional variation to be explored whereas

sea surface temperature and climate indices were consid-

ered at a regional scale. Substrate type was identified

through the ShoreZone coastal classes of ‘Rocky’,

‘Gravel’, ‘Sand’ and ‘Man-made’ (British Columbia Mar-

ine Conservation Analysis Project Team, 2011). Tidal

current strength data (Foreman 1978) were quantified

using root mean square (RMS) of tidal speeds modeled

over a number of tidal cycles, and are used as an indica-

tion of relative current speed. RMS analysis is used to

indicate relative mixing within estuaries and enclosed

areas such as fjords and narrows (Etherington et al.

2007). Mixing is then used as an indicator of relative

temperature and stratification conditions, where areas of

Figure 4. Boxplots of the relative distributions of sampled kelp pixels (n = 500), for the classification results of 500), for the classification results

of each image year and the reference.
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high mixing indicate weak or no stratification, and

therefore lower ocean temperature.

Multiple sources of sea surface temperature were con-

sidered including satellite-derived SST anomalies for the

Strait of Georgia from 2003 to 2016 (Suchy et al. 2019)

and SST data collected by a citizen science program as

part of the Pacific Salmon Foundation’s Salish Sea Marine

Survival Project using CTD profiles collected in Cowichan

Bay and Sansum Narrows from 2015 to 2017. The satel-

lite-based data provide a broad scale picture of SST

anomalies which may have been modified to varying

degrees across the subregions due to local scale driver

such as mixing and river effluent. The limited time series

of local scale data from the citizen science program

corroborates this effect, as temperatures measured in the

narrows were 1-3 degrees lower than the satellite data.

Results

Image reliability

All images used for the persistence analysis showed high

values for the reliability matrix, which were considered

sufficient to detect the presence or absence of kelp within

a 100 m shoreline unit. The kelp maps (Fig. 5) show sim-

ilar patterns of kelp growth across years within the study

areas. Specifically, the reliability matrix (Table 1) shows

that the 2015 image exhibited the highest reliability (12)

Figure 5. Classification results for the five images with each year’s image extent shown in dashed lines. Note the difference in coverage area for

the 2004 image which did not cover East Sansum.
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and the highest percentage of kelp (89.2%). The 2012

image had the lowest reliability (9) due to slightly poor

environmental conditions, including tide height, glint and

water surface roughness (Table 1). The lowest kelp pres-

ence was detected in 2017 (45.7%), which had the second

highest reliability (11) (Table 1).

Classification

The results of the accuracy assessment for the 2016 image

with concurrent field data yielded total (86.9%), users’

(81.9%) and producers’ (93.1%) accuracies (Table 3).

The largest errors occurred in areas where kelp corre-

sponded to single bulbs or small clusters. These errors

were a result of the greater proportion of water in these

pixels dampening the high NIR reflectance of kelp. Simi-

lar results, with accuracies between 74 and 94%, were

reported in other studies using satellite imagery to map

floating algae where high-density beds had higher accu-

racy (Fyfe et al. 1999; Casal et al. 2011).

For the remaining image years of 2004, 2012, 2015 and

2017, the analysis of distribution and median values for

kelp NDVI and GNDVI for all image samples are

described in a boxplot in Figure 4. The Wilcoxon signed-

rank test shows that kelp NDVI values were the same as

the 2016 reference pixels for all image years except 2004

and 2012, while the kelp GNDVI values were the same

for all image years except 2012 (Table 4). The distribution

of slightly higher NDVI and GNDVI values for 2004 and

2012 images are likely due to the presence of denser kelp

beds than were present in the 2016 reference image rather

than misclassification as spatial filtering and visual error

adjustment would have removed any erroneous high NIR

reflectance sources, such as glint or boats.

Spatial patterns of persistence

448 units were analyzed, representing 48.8 km of coastline

(Figs. 6 and 7). Of the 448 units, 37.1% (166 units) had

kelp present in at least 1 year (persistence > 0%). The

regions north of Sansum Point (N, MB, OP), accounting

for 31.2% (140) of all units, had kelp absent in all consid-

ered years (persistence = 0%). On the north side of Cow-

ichan Bay (NC) and west side of Sansum Narrows (WS),

persistence was generally high with 61.0% of units show-

ing kelp present in at least 1 year. Specifically, in the WS

region, 36.7% of shoreline units showed kelp present in

all years and 54.4% in four or more years. In North Cow-

ichan (NC), temporal presence of kelp was lower with

13.9% of units showing kelp in all years and 32.9% of

units in four or more years, followed by even lower per-

sistence measured on the south side of Cowichan Bay

(SC), with no units having kelp in all years. The east side

of Sansum Narrows (ES) also showed high persistence of

kelp considering the four image years (excluding the 2004

image due to differences in image extents); kelp was pre-

sent in about half of the 88 units and 50.0% of those kelp

units had kelp present in at least 3 years.

Temporal change

To understand change over time in kelp presence, the 166-

shoreline units (37.1% of the total number of units), which

showed kelp present in at least 1 year, referred to as ‘kelp

units’, were used in the analysis. The kelp units were used

with the understanding that units where persistence = 0 do

not have suitable environmental conditions for kelp to

grow and no change will have occurred over time.

We then used this set of kelp units (166) to calculate

the yearly percentage of units with kelp present. Region-

ally, the highest kelp presence was in 2015 (89.2%),

Table 3. Validation error matrix for the 2016 Image using a subset of

concurrent field data.

Field data

Kelp

Non-

kelp Total

User

accuracy

Total

accuracy

Classification

Kelp 376 83 459 81.9 86.9

Non-kelp 28 362 390 92.8

Total 404 445 849

Producer

accuracy

93.1 81.4

Table 4. Wilcoxon tests for differences between field data from 2016 base image and other imagery.

Image year

NDVI GNDVI

W stat P value Difference W stat P value Difference

2004 11902 <0.001 Yes 23901 0.0897 No

2012 15656 <0.001 Yes 12028 <0.0 Yes

2015 47028 0.988 No 48326 0.6571 No

2016 31482 0.1384 No 30384 0.1867 No

2017 24104 0.1029 No 24528 0.1683 No
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followed by 2016 (76.5%), 2004 (66.1%), 2012 (62.7%)

and the lowest number was in 2017 (45.7%) (Fig. 8). This

indicates that there was an overall decrease in kelp pres-

ence from 2015 to 2017 of 48.6%, with a general increase

from 2012 to 2015 of 42.9%. Similar trends are seen on a

sub-regional scale, where all sub-regions experienced a

loss of kelp from 2015 to 2017. However, this was least

pronounced in West Sansum where the decrease was

20.3% compared to the greatest decrease in South Cowi-

chan of 86.4% (Fig. 8).

Spatial drivers

Figure 9 shows the greatest persistence of kelp when the

substrate is rocky and where RMS tide is either low, 0.1, or

medium between 0.3 and 0.6, on a scale of 0–1 (Foreman

1978). Figure 10 shows how East and West Sansum have

both high proportions of rocky substrate and high RMS

tide (>50% of area with values >0.5) and at the same time

medium to high kelp persistence (Fig. 7), while areas which

had low kelp persistence in Maple Bay, Octopus Point and

North region (Fig. 7) had low RMS tide (values <0.3).

Discussion

Limitations of satellite imagery

In a satellite imagery-based method, using kelp presence

or absence within a shoreline unit helps to reduce the like-

lihood that no kelp is detected due to beds that are too

small or sparse in relation to the imagery spatial resolu-

tion. Still, it is possible that only small patches of kelp are

present in a given shoreline unit and thus not detected in

which case the unit will be recorded as having no kelp.

Figure 6. Persistence of kelp beds in

Cowichan Bay and Sansum Narrows from

2004 to 2017. Shaded grey areas indicate the

Sub regions of SC = South Cowichan,

NC = North Cowichan, WS = West Sansum,

ES = East Sansum, OP = Octopus point,

MB = Maple Bay, N = North channel.
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Furthermore, the limited spatial and temporal extent of

the dataset creates uncertainty in determining the drivers

of kelp persistence. A longer time series of data with

greater regional coverage would allow better understand-

ing of variability and its relationships to long- and short-

term local and global scale environmental conditions.

Other satellite platforms can be used for mapping kelp

extent, each with their own strengths and weaknesses

(Bennion et al. 2019; Schroeder et al. 2019). The use of

commercial high-resolution satellite imagery as in this

study allows the user to acquire images during optimal

conditions of tide height, cloud cover, water conditions

and kelp growth resulting in the highest quality imagery

for mapping kelp. The high resolution allows small or

fringing beds which are adjacent to the shoreline to be

detected and may also be used to differentiate species

(Botha et al. 2013) and estimate biomass (Andr�efou€et

et al. 2004; Knudby and Nordlund 2011). However, com-

mercial platforms may be cost prohibitive as tasking ima-

gery can cost up to 30 USD/m2 (DigitalGlobe.com. 2019).

However, free sources of imagery such as from the Land-

sat series with a 30 m resolution much of the nearshore

beds will be missed due to spectral mixing of pixels with

land. Landsat is still a valuable source of imagery for

mapping large kelp beds on a large scale where the use of

an extensive historical time series can form composites of

kelp extent seasonally and detect trends in kelp abun-

dance and be averages to account for areas covered by

cloud and differences in tide (Bell et al. 2018; Nijland

et al. 2019). However, its application is limited to regions

with large offshore beds of kelp (Nijland et al. 2019).

Copernicus’ Sentinel-2 is also a free source of imagery

and with a spatial resolution of 10 m it may be more

appropriate for monitoring fringing kelp moving forward

as the mission began in 2015. Additionally, free open

source software such as Google’s Earth Engine and QGIS

are making the use of satellite imagery for environmental

monitoring increasingly accessible to a wider user base

and allow for the automated analysis of imagery for use

in broad scale mapping and change analysis (Nijland

et al. 2019; Traganos et al. 2018. These broad scale maps

can then be used to inform the selection of representative

or important sites for more rigorous surveys.

Spatial drivers

The regions that had the highest kelp persistence were

East and West Sansum (Figs. 6 and 7). These areas pro-

vide optimal growth conditions in regard to substrate

type (rocky) and relatively strong currents a result of the

narrow passage (~0.5 to 1.0 km) in Sansum Narrows

(Mullan 2017). These stronger currents result in higher

mixing and reduced stratification, which lead to lower

temperature to which kelp is exposed compared to more

stratified waters of Cowichan Bay.

The kelp persistence in Cowichan Bay may also be dri-

ven by substrate type and current strength. On the north

side of Cowichan Bay there is a prevalence of rocky sub-

strate, so despite the low currents recorded here (ex-

pressed as 0.1 RMS) kelp growth is supported (Figure 7

and 10). The lower persistence of kelp along the south

side of Cowichan Bay is likely associated with substrate

availability; here substrate consists of sand and gravel

combined with lower currents, which allow for sediment

deposition and less available substrate for kelp growth.

Gravel and sand habitats typically indicate lower energy

environments and favor species such as eelgrass, which

attaches to substrate using root-like rhizomes (Mumford

2007). Limited availability of hard rocky substrate will

constrain the amount of kelp that can grow and the pres-

ence of sandy substrate indicates deposition of sediment,

which can smother kelp recruits.

The sub-regions north of Sansum Point (Octopus

Point, Maple Bay and the North Channel) have similar

Figure 7. Percentage of total shoreline units

with persistence of kelp by sub-region and

entire region. East Sansum units are calculated

from only four images (2012, 2015, 2016, and

2017) due to differences in number of images.

For region definitions, see Figure 6.
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predominantly rocky substrate types and current regimes

(>0.3) to North Cowichan; however, kelp is absent in

these regions whereas there are persistent beds in North

Cowichan. Conditions north of Sansum Point may be less

optimal for kelp growth due to warmer SST and higher

turbidity when compared with North Cowichan. These

regions may experience a stronger influence from warmer,

turbid, stratified waters from the Fraser River (Suchy

et al. 2019).

Temporal changes

The general detected change in kelp presence may repre-

sent a true decline from 2015 to 2017 or it may be within

the natural bounds of variation given that presence in

2015 (62.6%) was not much higher than in 2017 (45.7%).

However, on a sub-regional scale, it appears there are

large variations in kelp, especially in South Cowichan;

here we observed 91.9% in 2015 and 12.5% in 2017. In

nearby Washington State, Pfister et al. (2018) showed that

there was little significant change in kelp persistence over

a period from 1911 to 2015, except for areas in close

proximity to human populations where kelp populations

showed declines. Furthermore, Krumhansl et al. (2016)

found a slight increasing trend in the Ecoregion contain-

ing Oregon, Washington, and Vancouver Island in studies

spanning from 1983 to 2012, and suggested that local dri-

vers including successful management practices, recovery

of urchin predators and reduction in pollution are

responsible for the differences from globally decreasing

trends.

In the study area of Cowichan Bay and Sansum Nar-

rows, environmental management has focused on the

river and estuarine system including improving river

levels, salt marsh and eelgrass bed restoration in support

of creating habitat for juvenile salmon (https://www.cowic

hanestuary.com/projects-2/). More broadly, the provincial

government has conducted limited inventories of coastal

kelp resources for determining harvest quotas with the

most recent in 2007 (Sutherland et al. 2008); however,

Figure 8. Percent of Kelp Units containing kelp each year by sub region and overall. Sub regions are: East Sansum (ES), North Cowichan (NC),

South Cowichan (SC), and West Sansum (WS). Note OP, MB and N were not included as no units had kelp in any year. No data were available

for ES in 2004 due to imagery coverage.
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kelp in the study is not harvested and the observed

changes are likely associated with local environmental

conditions.

The changes in persistence for the study region do not

follow the expected trend in relation to large-scale climate

indices. For instance, decreased kelp presence may occur

during warm periods of the Pacific Decadal Oscillation

(PDO) and El Nino Southern Oscillation (ENSO) as

observed in Pfister et al. (2018) and higher kelp presence

during positive phases of the North Pacific Gyre Oscilla-

tion (NPGO) when salinity and nutrients are high (Di

Lorenzo et al. 2008). Instead, for 2015, the year with the

highest recorded regional temperature anomalies during a

positive PDO, our data showed the highest presence of

kelp. In Washington State, the PDO, NPGO, and ENSO

indices were found to have significant correlations with

kelp abundance (Pfister et al. 2018), whereas lower tem-

peratures (negative PDO, ENSO, positive NPGO) were

associated with higher nutrients and increased kelp

abundance (Bennion et al. 2019). Multiple studies have

shown the inverse relationship between warm climate

regimes and kelp abundance (Foreman 1984; Cavanaugh

et al. 2011; Filbee-Dexter et al. 2016; Krumhansl et al.

2016; Pfister et al. 2018); however, the impacts may be

short-lived given a switch to colder, nutrient rich condi-

tions, which can provide opportunities for kelp to recover

relatively quickly (Pfister et al. 2018).

Several factors may explain the changes in kelp persis-

tence described in this study. Poor environmental condi-

tions such as the warm SSTs recorded from 2013 to 2016,

may have had a lag in the effects on the persistence of

kelp. In these conditions, prolonged periods of exposure

to water temperatures greater than 17°C have been shown

to reduce spore formation and germination success

(Vadas 1972; Springer et al. 2007). The warmer than

average regional SSTs in 2015 and 2016 (Suchy et al.

2019), may be responsible for the lower presence of kelp

in the subsequent years (2016, 2017) through reducing

Figure 9. Kelp persistence across substrate

types (top) and RMS tide (bottom), where RMS

0.1 is low current and 0.9 is high current.

ª 2019 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 339

S. B. Schroeder et al. Spatial and Temporal Kelp Trends



spore production and germination (Dayton et al. 1998).

Similarly, a 1-year lag was shown to be the best predictor

of kelp growth and SST in Washington State (Pfister et al.

2018). Conversely, light availability, which also limits kelp

growth, is more likely to cause within-year effects on kelp

beds (Desmond et al. 2015). In 2015, positive anomalies

in photosynthetic light availability were recorded for the

Strait of Georgia region (Suchy et al. 2019), which may

help to explain the high kelp presence for that year.

Furthermore, in situ measurements of SST from Cowi-

chan Bay from 2015 to 2017 were on average 3°C cooler

than those measured for the Strait of Georgia region, indi-

cating that large-scale temperature anomalies were likely

minimized due to the higher currents and stronger mixing

in this sub-region. Because both nutrient availability and

stratification are linked to temperature and mixing, this

sub-region, particularly Sansum Narrows may experience

better kelp growth conditions than the region as a whole.

This is significant as the persistence of kelp populations

here may be an important source of spores to adjacent

areas and facilitate connectivity between habitats (Reed

et al. 2004; Coleman et al. 2011; Olson et al. 2019).

Conclusion

Using high spatial resolution satellite imagery, temporal

and spatial persistence of kelp was determined in the

coastal waters of British Columbia. In this region, bull

kelp showed higher persistence in areas with rocky sub-

strate and well-mixed waters. Temporal analysis showed

declines from 2015 to 2017, which may be due to local

scale effects related to a lag effect from anomalous warm

temperatures from 2015 to 2016.

The limitations of using satellite images for kelp detec-

tion include access to images with the appropriate spatial,

spectral, temporal and physical coverage of the areas of

interest, and the environmental conditions during acquisi-

tion such as tide height, season, sun glint and water sur-

face. Using only images with the highest reliability, the

resulting classifications show higher accuracy (86.9% in

Figure 10. Coastal class (Top) and RMS tidal

speeds (bottom) by Region. SC = South

Cowichan, NC = North Cowichan, WS = West

Sansum, ES = East Sansum, OP = Octopus

Point, MB = Maple Bay, N = North.
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relation to field surveys) and acceptable statistical perfor-

mance compared to expected spectral characteristics of

kelp for historical images.

Continuous and long-term mapping is needed to estab-

lish relationships between the measured persistence and

environmental variables and to determine whether decli-

nes are long lasting or due to natural variability. By utiliz-

ing all available imagery sources such as new sensors like

Sentinel-2 and developing automated processes for detect-

ing kelp, a greater understanding of spatial and temporal

drivers can be gained. Monitoring efforts may want to

combine large scale mapping for broad scale spatial tem-

poral distribution and use this data to select representa-

tive sites for yearly collection of more detailed data for

validation of imagery and biological data. This will allow

conservation and management initiatives to better under-

stand and mitigate impacts to kelp ecosystems.
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