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Abstract: Kelp forests are commonly classified within remote sensing imagery by contrasting the 

high reflectance in the near-infrared spectral region of kelp canopy floating at the surface with the 

low reflectance in the same spectral region of water. However, kelp canopy is often submerged be-

low the surface of the water, making it important to understand the effects of kelp submersion on 

the above-water reflectance of kelp, and the depth to which kelp can be detected, in order to reduce 

uncertainties around the kelp canopy area when mapping kelp. Here, we characterized changes to 

the above-water spectra of Nereocystis luetkeana (Bull kelp) as different canopy structures (bulb and 

blades) were submerged in water from the surface to 100 cm in 10 cm increments, while collecting 

above-water hyperspectral measurements with a spectroradiometer (325–1075 nm). The hyperspec-

tral data were simulated into the multispectral bandwidths of the WorldView-3 satellite and the 

Micasense RedEdge-MX unoccupied aerial vehicle sensors and vegetation indices were calculated 

to compare detection limits of kelp with a focus on differences between red edge and near infrared 

indices. For kelp on the surface, near-infrared reflectance was higher than red-edge reflectance. 

Once submerged, the kelp spectra showed two narrow reflectance peaks in the red-edge and near-

infrared wavelength ranges, and the red-edge peak was consistently higher than the near-infrared 

peak. As a result, kelp was detected deeper with vegetation indices calculated with a red-edge band 

versus those calculated with a near infrared band. Our results show that using red-edge bands in-

creased detection of submerged kelp canopy, which may be beneficial for estimating kelp surface-

canopy area and biomass. 

Keywords: kelp; hyperspectral; multispectral; red-edge; near-infrared; satellite; unoccupied aerial 
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1. Introduction 

Kelp forests are highly productive three-dimensional coastal marine habitats [1,2] 

that provide a number of environmental services and contribute substantial economic 

value to coastal communities globally [3]. In the northeast Pacific, the two dominant sur-

face-canopy forming kelp species, Nereocystis luetkeana and Macrocystis pyrifera [4], stabi-

lize shorelines via wave dampening [5,6], support economically important fisheries [7,8], 

and are commercially harvested for various purposes [9,10]. However, both kelp species 

are subject to high spatial and temporal variability, correlated with biotic and abiotic driv-

ers of change [11,12]. As such, resource managers are incentivized to monitor the status 

of these kelp forests, and the corollary effects of the ecosystem services they provide 

[10,12,13], a task that has been facilitated by remote sensing since the mid-20th century 

[12,14].  
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Generally, the remote sensing of surface-canopy forming kelp forests aims to detect 

the portion of the kelp that forms a canopy, floating at the water’s surface; using sensors 

aboard Earth Observation Satellites (EOS) [15,16], piloted aircraft [10,12], and Uncrewed 

Aerial Vehicles (UAVs) [17]. In order to use the data provided by remote sensing plat-

forms effectively, it is crucial to understand factors that influence the spectral signature of 

kelp canopy in water [16]. Floating kelp canopy has high reflectance in the near-infrared 

wavelength range (NIR) (700–1000 nm), which contrasts with the high NIR absorption by 

the surrounding water, allowing for binary classification of floating kelp canopy and wa-

ter within an image [14]. However, there are numerous considerations (e.g., sun glint, ba-

thymetry, turbidity; see [13,16]) that can reduce the separability between the spectral val-

ues of kelp canopy and water. One crucial factor that can affect the ability to detect kelp 

canopy is the submersion of the canopy by tides and associated tidal currents, which can 

dampen the NIR reflectance of kelp and lead to potential errors when estimating kelp area 

or biomass [17,18]. 

In an attempt to minimize classification errors associated with kelp submergence, 

remote sensing imagery is often acquired at low tides during the peak growing season 

(mid-late summer) when the majority of the kelp canopy is floating at the water’s surface 

[10,18,19]. However, there are multiple reasons why a remote sensor may also want to 

detect the submerged portion of the kelp canopy. For example, the northeast Pacific coast-

line often experiences non-ideal weather conditions for remote sensing data acquisition, 

leading to imagery being opportunistically collected at higher than ideal tidal heights 

when more kelp canopy is more likely to be submerged compared to ideal low tide con-

ditions [13,16]. Further, the fixed rate of EOS orbits may result in some regions only hav-

ing imagery available during high tides even if acquisition conditions are otherwise ideal 

[13]. Even if remote sensing imagery is captured during ideal tide and weather conditions, 

portions of kelp canopy may also be continuously submerged depending on the species 

being targeted. Specifically, if a remote sensor is targeting detection of Nereocystis luetkeana 

(hereafter, Nereocystis) surface canopy, one has to consider the two distinct structures with 

varying buoyancy, the bulb and blades. The bulb is a roughly cylindrical gas-filled struc-

ture that floats on the surface of the water and is anchored to the sea floor by a stipe and 

holdfast [9]. The blades are long thin structures that trail from the end of the bulb, often 

with many individuals around four meters long per bulb [9]. The blades are not buoyant 

and are likely to remain submerged below the water’s surface regardless of tidal height 

[16,20]. In addition, floating portions of kelp canopy may be periodically submerged in 

areas with especially strong currents [20]. Therefore, it is important to understand how 

submersion of kelp canopy affects the reflectance in the NIR range, as well as whether 

certain spectral features may allow for higher detectability of kelp when collecting remote 

sensing imagery from different platforms. 

In the past, the red-edge (RE) spectral region (670–750 nm), which includes a range 

of the shortest NIR wavelengths, has traditionally been used to determine health charac-

teristics of terrestrial plants [21]. However, these wavelength ranges also penetrate deeper 

into the water column than longer NIR wavelength ranges [22], resulting in the potential 

for higher above water reflectance in the RE than the longer NIR for submerged vegetation 

[23–26]. Therefore, given the spectral similarities between kelps and other types of vege-

tation, it is reasonable to assume that the RE wavelength range may also be beneficial for 

detecting submerged kelp canopy. Hereafter, the term NIR will refer to only the longer 

wavelength range above 751 nm, to avoid confusion with the NIR wavelength range that 

overlaps the RE wavelength range. 

To date, there have been no direct comparisons of the ability to detect submerged 

kelp when using RE or NIR wavelength ranges. Additionally, while the submersion kelp 

canopy due to tides and currents is well documented using various sensors with different 

spatial and spectral resolutions [11,17–20,27], there has been no characterization of the 

changes to the above water spectra of kelp as the canopy is submerged, nor any investi-

gation of the band combinations used in vegetation indices in relationship to accurate 
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detection of the submerged kelp canopy. With this is mind, our goal was to characterize 

changes to above-water reflectance of different Nereocystis canopy structures as they were 

submerged and to relate those changes to depth detection limits. To accomplish this goal, 

we performed (1) an experiment that documents the effects of kelp submersion on the 

above-water hyperspectral reflectance of both Nereocystis bulb and blade structures. We 

also compared (2) the detection limits of submerged kelp using RE and NIR vegetation 

indices, which were calculated from the simulated multispectral bands of high spatial-

resolution air- and space-borne sensors. 

2. Materials and Methods 

2.1. Spectral Data Acquisition and Processing 

The kelp submergence experiment took place on a marina dock in Victoria BC, on a 

sunny, cloudless day in September 2020. The Secchi depth during the time of the experi-

ment was 7.5 m, showing relatively clear water, similar to general conditions for the 

coastal waters of the Salish Sea at the same time of year with low influence from riverine 

discharge, and low levels of total suspended-matter, chlorophyll-a, and colored dissolved 

organic matter present in the water column [28]. While the ranges of both Nereocystis and 

Macrocystis overlap on the British Columbia coast, only Nereocystis is found around the 

southern tip of Vancouver Island where this study occurred. The location and timing of 

the experiment allowed for the control of four criteria that we required: (1) controlled sea-

state; with the dock acting as a shelter from any slight breezes, thereby minimizing varia-

bility in glint or light refraction due to ripples or waves on the water [29]; (2) platform 

stability, which minimized the potential errors during spectral acquisition due to the 

movement of both kelp and sensor that might occur in situ from a boat; (3) maintained 

environmental conditions expected in situ during peak biomass for local kelp, such as the 

inherent optical properties of water and optical constituents within the water column that 

would be difficult to reproduce in vitro; (4) a water depth (12 m) greater than the Secchi 

depth to minimize the influence of substrate reflectance on the above-water reflectance 

signal [30,31]. 

The experiment consisted of four separate trials. For each trial, a sample of Nereocystis 

was attached to a black frame made of high-density polyethylene (a plastic with low re-

flectance across the visual and near-infrared wavelength ranges), which was submerged 

from the surface to 100 cm in 10 cm increments on the sunlit side of the dock (Figure 1). 

Before each trial, radiance measurement of a Spectralon white-reference panel (Lspec(λ)) and 

an internal dark-current reading were taken to calculate reflectance (Table 1; Equation (1)) 

and reduce noise in the spectral data [32]. During each trial, ten individual above-water 

hyperspectral radiance measurements (LT(λ)) of kelp were collected at each incremental 

depth. Two of the four trials used the Nereocystis bulb, and two trials used the Nereocystis 

blades. Therefore, in total, 20 measurements of LT(λ) were collected for each kelp structure 

(bulb or blades) at each depth. After each trial, 10 radiance measurements were taken of 

the sky (Lsky(λ)) to be used in sky glint corrections [33]. Additionally, a total of 60 LT(λ) meas-

urements were taken of water with no kelp within the field of view as a baseline for com-

parison with submerged kelp.  
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Figure 1. Side view of submergence experiment showing the geometry of acquisition for spectrora-

diometer and angle of zenith for the sun. Inset shows nadir view of the experiment with the azi-

muthal angle between spectroradiometer and sun and kelp blades inside the black frame. Diagrams 

are not to scale. 

Table 1. Spectral parameters used to calculate above-water reflectance, as per Equation (1). All spec-

tral measurements were collected using a calibrated ASD Fieldspec Handheld2 spectroradiometer 

with a one-degree fore optic (full viewing-angle), which detects a wavelength range from 325–1075 

nm at 1 nm increments. 

Symbol Name Units Angle from Nadir Sun-Sensor Azimuthal Angle 

λ Wavelength nm - - 

LT Above-water radiance μW cm−2sr−1nm−1 5° 135° 

Lspec White panel radiance μW cm−2sr−1nm−1 5° 135° 

Lsky Sky radiance μW cm−2sr−1nm−1 175° 135° 

𝜌′ Proportionality factor - - - 

The solar elevation angle during the experiment was 46°, which ensured sun-glint 

did not contaminate the spectra based on our geometry of acquisition [33,34]. LT(λ) meas-

urements were taken at 5° from a nadir viewing angle to avoid reflection of the white 

spectroradiometer in the field of view on the water surface, and a sensor-sun azimuthal 

angle of 135° was used to minimize specular reflection in the field of view (FOV)[33]. Lsky(λ) 

measurements were taken at 5° from zenith at the same azimuthal angle as LT(λ). The spec-

troradiometer was held one meter above water, giving a footprint ranging from about 1.6 

cm at the surface to 3.8 cm when the target was 100 cm deep. This small footprint was 

meant to ensure that the LT(λ) measurements contained 100% kelp, avoiding mixed pixel 

considerations [35].  

𝑅(𝜆)0+(%) = (
(LT(λ))

(Lspec(λ))
−

(𝜌′ ∙  Lsky(λ))

(Lspec(λ))
) × 100 (1) 



Remote Sens. 2022, 14, 2241 5 of 20 
 

 

Here, 𝜌′ was the proportionality factor of 0.0211, which relates the radiance meas-

ured directly from the sky to the estimated amount of sky radiance reflected off the sea 

surface based on wind, cloud cover, and geometry of acquisition [33]. 𝑅(𝜆)0+(%) for kelp 

at the surface (0 cm) was not subjected to the sky glint correction. Hereafter, 𝑅(𝜆)0+(%) 

values for kelp on the surface, submerged kelp, and water with no kelp are referred to as 

R0+ for brevity. 

The R0+ spectra were first smoothed using a mean filter with a window of 5 nm to 

reduce noise while maintaining spectral features, and all spectra were then manually in-

spected for quality control. All bulb spectra were highly consistent, however, some blade 

spectra showed deviations in both the blue-green and NIR regions; likely due to water 

movement between blades as kelp was submerged, causing opened gaps in the “canopy” 

of blades attached to the platform. These spectra likely did not contain 100% blades within 

the field of view and were therefore removed from further analysis (Table 2). Despite the 

removal of some blade spectra, the smallest sample size at any depth after quality control 

was at 90 cm with n = 10 spectral samples. Therefore, we do not expect that these removals 

biased the results of this study.  

Table 2. Total number of each class of spectra before and after quality control was performed. 

2.2. Simulation of Micasense and WorldView Band R0+ and Indices 

After sky-glint correction, smoothing, and quality control of the spectra, R0+ meas-

urements were simulated into bands of the WorldView-3 (R0+WV3) and the Micasense 

RedEdge-MX (R0+MSRE) sensors [36,37]. These sensors were chosen because both have a 

relatively high spatial resolution (WV3: 1.84 m; MSRE: ~1–10 cm), which is ideal for map-

ping kelp canopy in nearshore regions where it is likely to be submerged by tides and 

currents [16]. The R0+ at the bands of these sensors were simulated using Gaussian func-

tions to estimate the sensor’s spectral response for each band, based on full-width half 

maximum values of each sensor’s band (Figure 2; Table 3). For a direct comparison, only 

the VNIR bands shared by both sensors were used for simulations. 

  

Spectral Sample Type 
Samples Col-

lected 

Samples Removed during 

Quality Control 

Samples Used in 

Analysis 

Bulbs (surface-100 cm) 220 0 220 

Blades (surface-100 

cm) 
220 51 169 

Water 60 0 60 

Sky 40 0 40 
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Figure 2. Relative spectral responses at each band according to Gaussian functions were used to 

simulate the shared bands of (a) WorldView-3 (WV-3) earth observation satellite and (b) Micasense 

RedEdge-MX (MSRE) uncrewed aerial vehicle sensors—from left to right: blue, green, red, red-edge, 

and near-infrared band locations are shown. 

Table 3. The effective bandwidths of the overlapping bands for both WorldView-3 (WV3) and Mi-

casense RedEdge-MX (MSRE) sensors. 

Band WV3 MSRE 

Blue 445–517 nm 459–491 nm 

Green 507–586 nm 546.5–573.5 nm 

Red 626–696 nm 661–675 nm 

Red-edge 698–749 nm 711–723 nm 

Near-infrared 765–899 nm 813.5–870.5 nm 

2.3. Normalized Vegetation Indices 

Once the hyperspectral data were simulated into the respective sensor bands, the R0+ 

at these bands were used to calculate normalized vegetation indices (VIn; Equation (2)), 

which are commonly used to enhance spectral features of interest and reduce sensitivity 

to environmental influences within remote sensing imagery [38,39]. We tested several 

band combinations for VIn as different band combinations may increase or decrease the 

separability between kelp and water in an image [40].  

VIn =  
band 2 − band 1

band 2 + band 1
 (2) 

Because naming conventions for different VIn combinations are not ubiquitous across 

published literature, here, we referred to each VIn as the order in which bands appeared 

in the numerator of the VIn equation, separated by an underscore (Table 4).  

Table 4. Vegetation indices calculated from simulated multispectral data. 

Vegetation Index (VIn) VIn Equation 

RE_R 
RE − red

RE + red
 

RE_G 
RE − green

RE + green
 

RE_B 
RE − blue

RE + blue
 

NIR_R 
NIR − red

NIR + red
 

NIR_G 
NIR − green

NIR + green
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NIR_B 
NIR − blue

NIR + blue
 

One of the most commonly used VIn for kelp mapping is NIR_R, which was originally 

used to detect terrestrial vegetation because of the high NIR and low red signal [38], but 

has since been used for kelp canopy detection due to the similar spectral characteristics 

between kelp canopy and terrestrial vegetation [14]. More recently, NIR_R has been pos-

itively correlated with both the areal extent and biomass of kelp canopy [15,18,19]. How-

ever, various other combinations of visible and NIR bands have been used for kelp canopy 

detection with multispectral sensors. For instance, Schroeder et al. (2019b) used NIR_R 

and NIR_G for kelp detection with the WorldView-2 imagery. The NIR_G combination 

may be more accurate for detecting a wide range of chlorophyll levels [41] and has gener-

ally been found comparable with NIR_R in the detection of both floating and submerged 

vegetation [26]. Stekoll et al. (2006) found that NIR_B and NIR_G both provided higher 

kelp canopy and water separability in aerial imagery than NIR_R. Further, recent com-

parisons with multispectral UAV and satellite imagery have shown that RE indices can 

improve separability of Macrocystis canopy and water when compared with NIR based 

indices [17,42], although this improvement was not specifically attributed to improved 

detection of submerged portions of the kelp canopy in either study.  

Here, we compared the statistical differences in NIR and RE-based VIn values. R0+MSRE 

and R0+WV3 bands were used to calculate NIR_B, NIR_G, NIR_R, and RE_B, RE_G, and 

RE_R for both bulb and blades separately, for each depth. The statistical analysis was 

comprised of (i) VIn values compared with one another at each depth from the surface to 

100 cm, and (ii) VIn values for water (with no kelp) compared to one another. First, the 

dataset was tested for normality, and while quantile–quantile plots suggested reasonable 

normality of the data distributions, Levene’s test showed nearly all groupings for com-

parison displayed heterogeneity in variance. Therefore a non-parametric test was used in 

the analysis [43]. The Welch’s ANOVA test was used to determine whether significant 

differences between VIn existed at each depth, and the Games–Howell post hoc test was 

used to determine which indices were significantly different from one another [44,45]. As 

part of the analysis, we focused on the statistical results comparing the RE and NIR coun-

terpart indices only (e.g., NIR_R & RE_R, or NIR_B & RE_B) at each depth.  

2.4. Threshold Selection and Depth Limits for Kelp Detection 

Once a VIn has been selected for classifying kelp in remote sensing imagery, a VIn 

value is then chosen as a threshold to classify the kelp and water within the imagery. For 

example, Cavanaugh et al. (2010) selected a threshold based on the 99.98th percentile high-

est NIR_R value from a histogram of known ‘deep water’ pixels, and Nijland et al. (2019) 

determined a NIR_R value of 0.05 to be a reasonable threshold by comparing pixel values 

of sparse kelp and open water. Since the R0+ values of water vary spatially and temporally 

according to optical constituents and inherent optical properties of water, as well as the 

characteristics of local substrate and bathymetry [28,46,47], these thresholds are often ‘dy-

namic’, and are therefore determined on an image-by-image basis. For satellite or airborne 

imagery covering a large regional scale, it may even be appropriate to select multiple 

thresholds across different regions within an image.  

We determined a dynamic threshold for each VIn based on the maximum VIn value 

measured for water during the experiment following Cavanaugh et al. (2010). The depth 

where the mean VIn value of submerged kelp dropped below the dynamic threshold value 

was considered the depth where kelp was spectrally indistinguishable from water. Since 

our experiment was conducted under ideal conditions (flat calm water, full sun, etc..) the 

dynamic thresholds were all negative values and the maximum depth of detection using 

these thresholds likely overstate the potential depths for kelp detection in actual remote 

sensing imagery. Therefore, we also used a second VIn threshold of zero, based on the 

theoretical spectral properties of kelp within an individual pixel that contains 100% kelp. 
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For example, within a pixel, if the R0+ value of band 2 (RE or NIR) equals the R0+ value as 

band 1 (the visible band), the numerator in the VIn equation (Equation (2)), and therefore 

the overall VIn value for that pixel, equals zero. This conservative threshold is closer to the 

values of 0.05 and 0.003 determined from remote sensing imagery by Nijland et al. (2019) 

and Mora-Soto et al. (2020), respectively. 

Depth detection limits were reported to the nearest 10 cm depth on the shallow side 

of the threshold because the kelp was submerged in 10 cm intervals. To determine 

whether the detectable kelp (values above the threshold) and non-detectable kelp (values 

below the threshold) were statistically separable, the means for kelp measurements im-

mediately above and below the threshold were compared for significant differences using 

Welch’s t-test [48]. 

3. Results 

Here, we present the spectral characteristics of Nereocystis bulbs and blades as they 

are each submerged from the surface to 100 cm, as well as the changes seen in the hyper-

spectral data when they are simulated into multispectral sensor bandwidths. Next, we 

show VIn comparisons for kelp, focusing on comparing the RE and NIR counterpart indi-

ces (e.g., NIR_R & RE_R, or NIR_B & RE_B) at each depth, and finally, we present the 

depth detection limits for each VIn as determined by both dynamic and conservative 

thresholds. 

3.1. Spectral Characteristics of Surface and Submerged Kelp 

Overall, the R0+ of both Nereocystis bulbs and blades showed similar placement of 

spectral features, however, the magnitude of reflectance at these features was different 

(Figure 3a,b). For Nereocystis, spectral features in the visible wavelength ranges are largely 

due to absorption by a combination of chlorophyll-a, chlorophyll-c, and fucoxanthin pig-

ments, which are characteristic pigments of bull kelp, as well as other kelp species [49,50]. 

Accordingly, here we saw a broad absorption feature in the 400–550 nm range and nar-

rower absorption features around 633 and 675 nm for both bulbs and blades at the surface. 

These absorption features resulted in reflectance peaks at 575, 600, and 645 nm for both 

bulbs and blades (Figure 3a,b, insets). In the NIR region, broad reflectance peaks were 

detected from 690 nm (RE) to 900 nm (NIR) (Figure 3a,b, insets) and small, narrow peaks 

centered at 761 nm were observed (Figure 4a,b). 

 

Figure 3. Reflectance values (R0+) between 400–900 nm (mean +/− sd) of water with (a) Nereocystis 

bulbs, and (b) Nereocystis blades, at incremental depths below water surface. The inset plots contain 
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spectra of bulbs and blades on the surface compared to the same spectra of submerged bulb and 

blades as in the main plots, for the purpose of showing the difference in magnitude. 

 

Figure 4. Zoomed in plot showing solar-induced chlorophyll fluorescence (SICF) peaks centered at 

761 nm for above-water R0+ for Nereocystis bulbs (a) and blades (b) at incremental depths below the 

water surface. Spectra are normalized at 770 nm to show relative changes to the shape of the SICF 

peak with submergence. 

When kelp structures were submerged, the influence of the water and its constituents 

on the R0+ signal increased with submersion for both bulb and blades. The decreases in R0+ 

in the RE and NIR region were far greater than decreases in R0+ observed across the visible 

region of the spectra (Figure 3a,b, insets). With initial submersion below the water’s sur-

face, the largest declines in the visible wavelength ranges were seen at 600 nm and 645 

nm, although all peaks in the visible region continued to decrease with submersion (Fig-

ure 3a,b). While the R0+ at the absorption feature between 400–550 nm initially decreased 

with submersion, the reflectance then rose as the depth of submersion increased. In the 

NIR region of spectra for both structures, once kelp was submerged, the broad NIR peaks 

were replaced by two peaks centered around 715 nm and 815 nm (Figure 3a,b), hereafter 

referred to as the RE peak and the NIR peak, respectively. At each depth, the R0+ at the RE 

peak was higher than the NIR peak. As submergence increased, the position of the RE 

peak shifted toward lower wavelengths within the RE wavelength ranges while the posi-

tion of the NIR peaks remained relatively stable. The small peaks at 761 nm remained 

stable, but decreased in magnitude with submersion, becoming difficult to visibly distin-

guish around 50 cm depth (Figure 4a,b). 

R0+WV and R0+MSRE showed the same general patterns as the hyperspectral data (Figure 

5a–d). However, some spectral information was lost with the reduction of spectral reso-

lution, such as the location and magnitude of different peaks. Overall, the differences in 

width and placement of bands resulted in only small differences in R0+WV3 and R0+MSRE band 

values (Figure A1a,b). For both bulbs and blades at the surface, differences in the visible 

wavelength ranges between R0+WV and R0+MSRE were less than 0.8% for the red, blue, and 

green bands, and these differences became even smaller as kelp was submerged. In the 

RE and NIR bands, differences between R0+WV and R0+MSRE were less than 0.3% on the sur-

face. Once submerged to 10 cm, differences between R0+WV and R0+MSRE increased to 1.8% 

in the NIR bands and 0.5% in the RE bands, although similar to the visible bands, the 
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differences between R0+WV and R0+MSRE also became smaller as the kelp was submerged 

deeper. 

 

Figure 5. Reflectance values (R0+) for bulbs (a,c) and blades (b,d) of simulated bands (mean +/− sd) 

shared by the Micasense RedEdge-MX (MSRE; a,b) and WorldView-3 (WV3; c,d), derived from the 

hyperspectral data (Figure 3) using Gaussian response functions (Figure 2). 

3.2. Vegetation Indices: Signal Strength and Depth-Detection Limits of Submerged Kelp 

Generally, RE VIn values were higher than NIR VIn values at a given depth as kelp 

was submerged (Figure 6). For bulbs, RE VIn values decreased linearly from the surface to 

100 cm, while NIR VIn showed a steeper linear decrease over the first 50 cm, followed by 

an inflection point and a lesser decline towards 100 cm. For blades, trendlines of both NIR 

and RE VIn resemble exponential functions, with the NIR VIn displaying a steeper decrease 

of values than the RE VIn.  
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Figure 6. Mean +/− sd of vegetation index (VIn) values for Nereocystis bulbs (a,c) and blades (b,d), 

submerged from the surface to 100 cm and water; derived from simulated Micasense RedEdge-MX 

(MSRE; a,b) and WorldView-3 (WV3; c,d) bandwidths. Paired letters above each column represent 

no significant differences (p ≥ 0.05) between mean index values at that depth. 

Specifically, the Games–Howell post hoc tests showed that for kelp at the surface, RE 

VIn values were either smaller than or not significantly different from their counterpart 

NIR indices (Figure 6), depending on the visible band used. Once kelp was submerged, 

RE VIn values were significantly greater than their NIR counterparts at each depth with 

the MSRE sensor. However, with the WV3 sensor, RE VIn values were not significantly 

greater than their NIR counterparts until 10 cm and 20 cm depth for blades and bulbs, 

respectively. All VIn values for water were negative, meaning that the R0+ at the visible 

band used in the VIn was higher than the R0+ at the RE or NIR band used in the VIn, re-

gardless of sensor simulation or index combination. RE_R consistently showed the highest 

values for water, followed by NIR_R, and there were no significant differences between 

RE_B and RE_G water values, nor for NIR_B and NIR_G water values. Here, we focused 

on the statistical results comparing the RE and NIR counterpart indices only (e.g., NIR_R 

& RE_R, or NIR_B & RE_B) at each depth, however, Figure 6 displays paired letters to 

indicate all pairs of VIn where no significant difference between VIn pairs was detected. 

The depth detection limits varied based on sensor type, kelp structure, and thresh-

olding method (Table 5; Figure 7). Overall, when using the conservative (more realistic) 

threshold of zero, RE VIn showed detection of kelp at least twice as deep as NIR VIn, and 

bulbs were detectable at greater depths than blades. Detection limits for the same VIn be-

tween sensors were generally within a range of 0–20 cm apart, although in a few cases 

(e.g., RE_R) these differences were larger. In addition, the choice of different visible bands 

for a VIn only resulted in detection limit differences up to 20 cm, with RE_R once again 

proving the exception. No RE indices crossed below the dynamic thresholds at 100 cm 

depth, meaning RE indices could detect kelp to at least 100 cm depth with these thresh-

olds, while NIR indices could generally detect kelp to around 100 cm depth or less. In all 

cases, the RE indices at 100 cm depth were more separable from water than the NIR 
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indices at the same depth. The use of different visible bands in the VIn combination gen-

erally resulted in detection limit differences of 0–30 cm for bulbs. For all measured depth 

detection limits, the index values measured at the increments 10 cm above and below the 

threshold remained divergent (p < 0.05), suggesting that all the measured results for con-

servative and dynamic thresholds are accurate to at least 10 cm increments. 

 

Figure 7. mean +/− sd of vegetation index (VIn) values for Nereocystis bulbs (a,c) and blades (b,d) 

submerged from the surface to 100 cm. derived from simulated Micasense RedEdge-MX (MSRE; 

a,b) and WorldView-3 (WV3; c,d) bandwidths. The black dashed lines at 0 represent the more con-

servative and realistic threshold, and the blue bars represent the full range of water values for each 

respective index, with the adjacent dashed lines representing the dynamic threshold. 

Table 5. Depth detection limits (cm) based on conservative threshold of 0.0 and the dynamic thresh-

olds (maximum water value) for Nereocystis bulbs and blades, as simulated to Micasense RedEdge-

MX (MSRE) and WorldView-3 (WV3) bandwidths. 

Index RE_B RE_G RE_R NIR_B NIR_G NIR_R 

MSRE 

Bulb 
Conservative (0.0) >100 90 >100 40 30 30 

Dynamic (max.) >100 >100 >100 >100 90 50 

Blade 
Conservative (0.0) 50 40 90 10 10 10 

Dynamic (max.) >100 >100 >100 >100 >100 30 

WV3 

Bulb 
Conservative (0.0) 90 80 100 50 40 40 

Dynamic (max.) >100 >100 >100 >100 >100 80 

Blade 
Conservative (0.0) 40 40 60 20 10 20 

Dynamic (max.) >100 >100 >100 >100 >100 40 

4. Discussion 

Overall, we found that submersion of kelp in water changes the shape and magni-

tude of R0+ in the RE and NIR region of kelp spectra (Figure 3), and Nereocystis bulbs had 

a higher magnitude R0+ in the RE and NIR region than blades (Figure 3). We also observed 

that RE VIn values for submerged kelp had higher separability from water than their NIR 
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counterparts (Figure 6), meaning that kelp can be positively classified at deeper depths 

when using an RE VIn (Table 3; Figure 7). Our results also showed that VIn that used a 

visible band with high R0+ (e.g., green or blue) had worse detectability for submerged kelp 

than a VIn that used a visible band with low R0+ (e.g., red). Together, these findings have 

important implications for the application of kelp remote sensing to the applied monitor-

ing of kelp forests. 

4.1. Spectral Characteristics of Kelp as It Is Submerged 

A broad R0+ peak across the NIR region was observed for surface measurements of 

Nereocystis as a result of the interaction of light with the cellular structure of the kelp [51]. 

Once submerged, our experiment showed two key changes in the NIR region of the kelp 

spectra (Figure 3), both due to characteristic absorption features of water: (1) the splitting 

of the single broad NIR peak into two narrower RE and NIR peaks due to prominent water 

absorption feature at 760 nm [52] and (2) higher R0+ at the RE peak versus the NIR peak, 

resulting from the continually increasing absorption of light by water above 600 nm [22]. 

Since Macrocystis and Nereocystis are spectrally similar to one another in the NIR region 

[15,18,27,50], and the changes seen in the spectra of submerged kelp are due to properties 

of water absorption, we expect that the spectral results of this experiment are generally 

applicable to both Macrocystis and Nereocystis canopies, making these findings relevant for 

surface-canopy forming kelp species globally. 

The results of these experiments were generally in line with our expectations accord-

ing to similar studies of submerged aquatic vegetation [24,25], although there were some 

interesting phenomena seen in the spectra that are worth noting. In the visible region of 

the spectra, R0+ in the red wavelength range decreased with depth, as expected. However, 

the R0+ at the absorption feature between 400 and 550 nm increased slightly with submer-

sion. We hypothesize that this increase in R0+ is due to the scattering of light by the condi-

tions of the water optical constituents, thus increasing the R0+ with depth. As such, we 

suspect that this increase in R0+ may be specific to the water conditions during the experi-

ment and may not have occurred if the water had contained more optical constituents that 

absorb blue light, such as colored dissolved organic matter. Another interesting phenom-

enon noted in the floating kelp spectra was what appeared to be a sunlight-induced chlo-

rophyll fluorescence (SICF) peak at 761 nm (Figure 4). Within the NIR region, photosyn-

thetic organisms generally have a broad SICF peak centered at 740 nm [53]. However, due 

to the high magnitude of the NIR reflectance, the SICF is usually only visible as a small, 

narrow peak centered at 761 nm. Typically, the R0+ within the NIR wavelength range over-

whelms the signal from SICF, however, atmospheric gasses highly absorb incoming irra-

diance at 761 nm, which can create a fill-in effect by the SICF in this region [53]. While this 

phenomenon has been correlated with photosynthetic output and general health of ter-

restrial vegetation and phytoplankton [53,54], we are not aware of any publications that 

report an SICF peak in kelp spectra, and this may present an opportunity for future hy-

perspectral research. Once kelp was submerged the SICF feature was dampened, and 

therefore future research should take note of the amount of kelp at the surface if attempt-

ing to derive information from an SICF peak. 

4.2. NIR Differences between Nereocystis Bulbs and Blades 

The magnitude of reflectance across the NIR region in vegetation is generally due to 

the cellular structure of the respective tissues [55]. Both Nereocystis bulb and blade tissues 

are composed of the same three cellular layers: the meristoderm, the medulla, and the 

cortex. The meristoderm is a thin chloroplast-packed epidermal layer that surrounds the 

entire individual [56], and the medulla is a complex web of filaments that acts as a trans-

portation system within the kelp, composing the innermost layer of kelp tissue [57,58]. 

Between these two layers is the cortex, which connects the meristoderm to the medulla, 

and generally provides structural support for the kelp [56,59]. Given this structural ar-

rangement, we speculate that the NIR signal from bulbs is consistently higher compared 
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to the blades’ signal because (1) the bulb cortex is many times thicker than the blade cortex 

[57,59]; and (2) the gas cavity of the bulb is lined by the medulla [57], creating a high sur-

face area with many large refractive differences—similar to the mesophyll layer of a ter-

restrial leaf [55,60]. In comparison, the blade medulla is housed in a gelatinous extracellu-

lar matrix between cells [57], and with no gas cavities, the refractive differences are much 

smaller, allowing for increased transmittance of NIR light through the blades [55]. For our 

experiment, spectral measurements for blades were taken using a single blade wrapped 

around the polyethylene frame with only slight overlap between the edges of the blade. 

However, Nereocystis individuals may have between 30–60 blades each. Overall, a thicker 

mass of blade tissues due to high overlap may result in higher R0+ in the RE and NIR 

wavelength ranges than seen in this experiment. 

4.3. The Implications of VIn Saturation for Detection of Floating and Submerged Kelp 

When the density or biomass of the vegetation increases within a pixel of remote 

sensing imagery, the VIn for that pixel will asymptotically approach a saturation (i.e., a 

high VIn value) [39,61]. This happens because when vegetation is dense, the R0+ at band 2 

(NIR or RE) is large relative to the R0+ at band 1 (the visible band). Our spectral measure-

ments contained 100% kelp within the field of view, and accordingly, the VIn values cal-

culated from the multispectral simulations were saturated when kelp was at the surface. 

Therefore, it is critical to understand how saturation affected the VIn values of floating 

kelp, as well as when kelp was submerged. For example, our WV3 simulations for bulbs 

at the surface showed that the R0+ at NIR and RE bands were large compared to the red 

band (21%, 14%, and 1%, respectively). As such, both NIR_R and RE_R indices for bulbs 

at the surface were approaching saturation (0.83 and 0.77 respectively) and either index 

would perform relatively well for detecting floating kelp if a VIn of zero was used as a 

threshold to classify kelp and water. When the bulb was submerged, the R0+ in the NIR 

and RE bands decreased rapidly by 10 cm depth (3.2 and 3.4% respectively) but were still 

relatively high compared to the red band, which had also decreased (0.6%), and therefore 

the NIR_R and RE_R values (0.66 and 0.68 respectively) were still relatively saturated, 

despite the large decreases in R0+ at the RE and NIR bands (Figure 5). As the kelp contin-

ued to be submerged, the R0+ at the NIR, RE, and red bands all continued to decrease, 

however, the R0+ at the NIR band decreased at a faster rate and therefore the NIR_R value 

dropped below the threshold of zero by 50 cm while the RE_R value was still above the 

threshold by 100 cm. Ultimately, this example shows that due to VIn saturation, the choice 

of RE or NIR will make little to no difference in classification of kelp at or near the surface. 

However, once submerged, the use of an RE VIn will still detect kelp deeper than an NIR 

VIn.  

4.4. Depth Detection Limits and Separability between Kelp and Water 

While it is important to understand how VIn values change as kelp is submerged, 

ultimately the accuracy of submerged kelp classification depends on the spectral separa-

bility between the submerged kelp and water. Here, we defined the depth at which kelp 

and water were no longer separable as the depth at where VIn values for submerged kelp 

decreased below the threshold value. RE VIn values for kelp and water had higher sepa-

rability at deeper depths than their NIR counterparts (Figure 6), meaning that deeper kelp 

can be accurately classified when using an RE VIn. Higher separability between kelp and 

water classes when using RE VIn has been documented using both high spatial-resolution 

multispectral UAV imagery [13] and with moderate spatial-resolution multispectral sat-

ellite imagery of Macrocystis [42], indicating that slight submergence of kelp surface-can-

opy may play a larger role in detection than previously thought. 

While the choice between RE and NIR VIn was an important factor in submerged kelp 

detection, the choice of the visible band can also shift the detection limits of submerged 

kelp. Our results show that both the water and submerged kelp spectra had higher R0+ in 

the green and blue wavelength ranges than in the red, and as such, submerged kelp 
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became undetectable at shallower depths when using NIR_R compared to NIR_G or 

NIR_B. In the visible wavelength ranges, red is absorbed fastest by the water column, and 

in our experiment, the NIR signal is generally absorbed by around 50 cm depth, making 

it reasonable for this pairing to consistently have the shallowest detection limits for sub-

merged kelp. At depths where the RE or NIR signal of kelp can no longer be detected, 

Figure 7 shows that subtle differences between kelp and water in the blue and green bands 

can still result in the kelp signal remaining above the dynamic threshold. However, these 

differences are small, and because conditions during the experiment were controlled, the 

added spectral noise from in situ environmental factors would likely complicate the de-

tection of both surface and submerged kelp in more realistic situations. For example, the 

blue wavelength ranges can be highly compromised in remote sensing imagery [29,46], 

with local variation in atmospheric composition reducing the certainty of accuracy for 

blue band values. Additionally, the optical constituents of coastal water can be highly 

spatiotemporally variable—affecting all regions of the spectra [28,46]. At high concentra-

tions phytoplankton in the water column may result in changes to reflectance in the visible 

wavelength ranges as well as high RE or NIR reflectance [62], while changes to optical 

constituents such as sediment or CDOM may also impede the detection of submerged 

kelp [47,63]. 

In this experiment, the optical water conditions (Secchi = 7.5) were typical of the 

coastal waters of British Columbia [18,28,64]. Considering the Secchi measurement, the 

local depth (12 m), and the R0+ from water with no kelp (Figure 3), the bottom substrate 

signal was not part of the measured R0+ in our experiment. Yet kelp on the coast of British 

Columbia is often found as fringing canopies near the shoreline [18], which can result in 

a strong contribution of benthic substrate to the R0+ measured by space and air-borne plat-

forms. Reflectance from shallow benthic features can result in highly variable R0+ in both 

the visible and near-infrared wavelength ranges, resulting in misclassification of sub-

merged vegetation as canopy kelp [47,64]. Therefore, it is important to understand site 

characteristics (e.g., bathymetry and water turbidity) to define better the use of NIR or RE 

for kelp classification. For instance, if enough understanding of the local conditions at the 

time of imagery acquisition is not available, it may be more appropriate to use NIR_R to 

reduce the addition of signal of the bottom substrate. Alternately, if imagery or associated 

ground truth data have a high enough spatial resolution (e.g., from UAV or other aerial 

platforms), visual interpretation of surface-canopy morphology from expert knowledge 

may be adequate for manual classification or ground truthing when using an RE VIn. 

4.5. Implications for Mixed Pixels 

During the experiment, spectral data were collected using a small footprint to reduce 

uncertainties associated with having the reflectance signal of multiple targets within the 

field of view (i.e., mixed pixels). However, remote sensing imagery often contains mixed 

pixels [16,35]. This becomes especially problematic when sensors have a lower spatial res-

olution, where erroneous classification of a pixel as kelp may result in the overestimation 

of total kelp canopy. Multiple end-member spectral mixture analysis (MESMA) is an ap-

proach that has been applied to satellite imagery for both Macrocystis [11,35] and Nereo-

cystis canopy [19,65] to determine what proportion of the pixel is kelp, and what propor-

tion is water. When MESMA is applied to remote sensing imagery for kelp detection, it is 

assumed that all VIn or band values within a pixel are a linear combination of kelp and 

water end-members [35]. However, if the kelp fraction within a pixel is low enough, the 

spectral contribution from water may overwhelm the kelp signal, lowering the overall 

pixel value and allowing the pixel to be erroneously classified as water [19,27]. Our results 

suggest that if submerged kelp is present when MESMA is performed, which is most often 

the case, the reduced signal from the submerged kelp within the pixel may lead to an 

underestimation of the kelp fraction within the pixel. Using an RE VIn when performing 

MESMA may allow the user to detect more submerged kelp, thus contributing to a higher 

overall pixel value and increasing the accuracy of the classification. This may be especially 
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relevant if attempting to determine relationships between remote sensing imagery and 

biomass, since Nereocystis blades show a higher correlation to the mass of the individual 

than any other metric tested [10]. Further, Nereocystis canopy generally has less dense bi-

omass at the surface than Macrocystis [65,66], and, therefore, is more likely to be misclas-

sified in moderate or low spatial resolution imagery. 

5. Conclusions 

Our experiment contributes new, detailed information on the effects of kelp submer-

sion on the above water reflectance, as well as a comparison of the depth detection limits 

of kelp when using red-edge and near-infrared indices. We determined that the near-in-

frared region of kelp spectra is strongly absorbed upon submersion, however, there is a 

narrow spectral peak in the red-edge region that can be used to enhance the remote sen-

sor’s ability to detect submerged kelp due to lower water absorption. Detection limits var-

ied based on kelp tissue, the thresholding method, and the visible band used in the vege-

tation index calculation, but overall, red-edge vegetation indices detected deeper than 

their counterpart NIR indices, which may allow the remote sensor to improve accuracy 

when mapping sparse and partially submerged kelp canopy or attempting to derive bio-

mass from canopy reflectance values. Kelp forests may be mapped using remote sensing 

for various reasons, ranging from estimation of biomass for kelp harvesting to multi-year 

temporal analyses to assess the impacts of environmental drivers on kelp ecosystems. Yet 

kelp systems can be highly variable in abundance between years, and our study shows 

that the spectral variables used to detect kelp canopy in remote sensing imagery play an 

important role in the amount of submerged kelp canopy detected. Therefore, it is critical 

for a remote sensing user to understand how the physical interaction between light and 

water may affect the depth at which kelp can be detected. For example, RE VIn might be 

especially useful if resource managers are attempting to set quotas for harvestable bio-

mass of Nereocystis and wish to detect as much blade biomass as possible for specific beds. 

However, if one wishes to reduce detection of subsurface kelp canopy or other shallow 

benthic vegetation, we recommend the use of the NIR_R (NDVI), which consistently had 

the shallowest detection limits of the indices tested. 
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Appendix A 

 

Figure A1. Differences between R0+ values of each shared band of the Micasense RedEdge-MX 

(MSRE) and WorldView-3 sensors, as simulated from the bulb (a) and blade (b) spectral measure-

ments. 
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